Perceplion, 1997, volume 26, pages 471—492

Color transparency

Michael D'Zmura, Philippe Colantoni, Kenneth Knoblauch, Bernard Laget
Institut d’ingénierie de la Vision, Université de St Fiienne, St Etienne, France
Received 10 June 1996, in revised form 24 February 1997

Abstract. Observation suggests that the chromatic changes which elicit an impression of transpar-
ency include translations and convergences in color space. Neither rotations nor shears in color
space lead to perceived transparency. Results of matching experiments show that equiluminous
translations, which cannot be generated by episcotister or filter models, give rise to the perception of
transparency. This implies that systematic luminance change is not needed for transparency to be
perceived. These results were used for the development of a method for detecting a transparent
overlay within 2 color image and for separating the overlay from the underlying surfaces. The
method tests for the coherence of chromatic change along contours through X-junctions to help
detect the contour of a transparent region. The algorithm tests locally for translation and conver-
gence to detect a fransparent region. It estimates globally the chromatic parameters of the
transparent overlay in order to separate the overlay from the underlying surfaces.

1 Introduction

The visual system identifies surfaces and uses their properties to help recognize
objects. Surface color is an important source of information, despite the frequent
changes in the chromatic properties of lights from surfaces. For example, shadows on a
sunny day cause lights from surfaces to become darker and bluer. Surface specularity
causes incident lights to be mirrored back towards the viewer as highlights, in addi-
tion to the diffusely reflected light that bears the surface color (Shafer 1985; D’Zmura
and Lennie 1986). A change in illumination across a scene causes reflected lights to
change in a way that depends on the chromatic properties of the illuminants; the
proper interpretation of this change underlies color constancy (IXZmura 1992).

The visual system uses surface color in identification and recognition despite such
chromatic variation because it readily interprefs systematic chromatic change correctly
as a change in surface viewing conditions (Craven and Foster 1992; Foster et al 1992;
DZmura and Mangalick 1994). Color transparency provides an excellent example of
this (see figure 1a). A surface that is seen both in plain view and through a transparent
overlay is identified as a single surface, despite the variation in its lights. Observers
separate the color properties of a transparent filter from the color properties of under
lying surfaces.

What conditions on colors in a still image are needed to perceive transparency?
The first is that two or more surfaces are seen both in plain view and under a
transparent overlay (Tudor-Hart 1928). The border between two such surfaces will
create a point of intersection between four different colored regions as it crosses under
the overlay. The second condition is that the changes in color at these fourway inter
sections or X-junctions must be such as to lead the visual system to infer that surface
regions seen in plain view correspond to surface regions seen under the overlay:
systematic color change is required for the visual system to infer surface correspondence.

The systematic color changes needed for the perception of transparency have been
identified as additive and subtractive color mixture in previous work (Metelli 1974;
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Beck 1978; Beck et al 1984; Da Pos 1989). Metelli (1974) used achromatic images to
show that additive mixtures of lights can lead to strong impressions of transparency.
These additive mixtures generalize Talbot’s law of color fusion, which describes the
light mixtures met when using an episcotister apparatus (Beck 1978). In this form of
transparency, lights from surfaces are mixed additively with the light from a transparent
overlay to produce the lights from the surfaces when viewed through the overlay.
Additive color mixture plays a role in both perception and performance. Da Pos (1989)
studied the perception of colored stimuli to generalize Metelli’s results with achromatic
additive color mixture to the three dimensions of color space. De Weert (1986) tested
the ability of observers to read overlapping pairs of words and found that words are
most legible when their values are mixed additively.

Beck and his colleagues argued for the importance of subtractive color mixture
(Beck 1978; Beck et al 1984). They pointed out that a light-absorbing filter which is
situated in front of a set of surfaces absorbs or subtracis light (Beck 1978). Indeed, the
spectral properties of lights from surfaces that lie under such a filter can most easily
be modelled as products of surface and filter spectral properties; light that is directly
reflected from the filter towards the viewer can also contribute an additive component
(Brill 1984; Kersien 1991; Mulligan 1993).

Gerbino and colleagues (1990) used a model of an episcotister to develop formulae
for transparency that combine both additive and subtractive color mixture. Their model
unifies much earlier work on conditions for achromatic transparency perception. The
work that we present here extends the unified model to color transparency.

We borrow from research on optic flow {eg Gibson 1979; Koenderink 1986) to
characterize the changes in the chromatic properties of lights which lead most effectively
to the perception of transparency. One may think of systematic changes in three-
dimensional color space in terms of vector fields that describe motions. The base of
each vector represents the chromatic properties of a surface seen in plain view, while
the arrowhead represents the chromatic properties of the same surface seen under the
transparent overlay. Many such surfaces provide a field of vectors that may represent
systernatic motions, including translation, convergence or divergence, rotation (curl),
and shear (deformation). Which of these systematic motions in color space leads to the
perception of transparency?

We report here that translation, convergence, and composition of the two can give
rise to the perception of transparency. Translation and convergence correspond to the
cases of subtractive and additive color mixture (Beck 1978; Beck et al 1984), respec-
tively. By combining translation and convergence in color space, we generalize the
model of Gerbino et al (1990) to color. We have found that other systematic changes in
color space, including rotation and shear, do not lead to the perception of transparency.

We use these results to create an algorithm for detecting transparent overlays in
color images. It tests locally whether X-junctions along a candidate border of a trans-
parent region are consistent with translation and convergence. Performing local tests
of this sort lets the algorithm detect both spatially uniform transparent overlays and
overlays with space-varying chromatic properties. The algorithm also estimates param-
eters of the global chromatic change across the border of a transparent region. If the
overlay is homogeneous, then the algorithm uses these parameters to separate overlay
chromatic properties from those of the underlying surfaces.

2 Chromatic change
We examine whether translation, convergence, rotation, and shear (Schey 1992) in color

space lead to an impression of transparency.
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2.1 Tramslation

Figure la (see color plate | on page 475) shows a flat array of Color Aid® papers
over which has been laid a small square sheet of transparent vellow plastic. Seven of
the papers lie on the border of the yellow filter and so are seen both in plain view
and through the filter. Figure 1b contains plots of the changes in the chromaticities
of the lights from these seven papers. Each vector represents one of the seven papers:
its base marks the chromaticity of the paper when seen in plain view and its arrow-
head marks the chromaticity when seen through the filter.

The plot shows that the changes in chromaticity are larger for some surfaces
(eg the blue ones), and smaller for others (eg the red) and that the directions of change
differ but are guite similar. The simplest model for the dependence of such changes
on surface and filter properties is a multiplicative one: functions of wavelength that
describe surface and filter spectral properties, respectively, are multiplied together to
produce the spectral properties of the light that reaches the viewer (eg Brill 1984;
Kersten 1991). Such models have the same bilinear form as models used in the study of
color constancy (eg Maloney and Wandell 1986; D’Zmura and Lennie 1986). While
analysis of such models shows that precise details of the change in chromaticities of
surfaces can be informative (D’Zmura 1992; D’Zmura and Iverson 1997}, we avoid the
complexities of these models here. A translation in color space is a good, first-order
approximation to the shifts in lights from surfaces when viewed under a filter.

The plot in figure Ib shows that the papers shift chromaticity in approximately the
same way, each becoming more yellow. Not shown are the accompanying decreases in
luminance of each paper. Indeed, the light-absorbing yellow filter causes each paper
to become more dark yellow. The overall change can be approximated well by a rigid
shift—namely a translation in color space.

A light-absorbing filter causes less light to reach the eye from an underlying surface.
One might guess that a translation in color space, like the change in figure |, must
include a decrease in luminance if transparency is to be perceived. Yet cases in which
luminance is increased can also lead to a strong impression of transparency (Metelli
1974). One might argue that an area of increased luminance is actnally an area in
which surfaces are seen in plain view, and that a filter with a hole cut out covers the
rest of the display. In this view, there is still a luminance decrease, caused by a light-
absorbing filter in the surround, that is responsible for the perceived transparency.

This fails to explain the perception of transparency with equiluminous translations.
We produced examples of chromatic translations along the equilominous L&M-cone
and the S-cone axes of color space (MacLeod and Boynton 1979; Krauskopf et al 1982;
Derrington et al 1984). We used displays of simulated surfaces which had reflectance
functions that were generated by a stochastic linear model described in Appendix A.
The surfaces were lit, in simulation, by CIE daylight illuminant Dg; (Wyszecki and Stiles
1982). The computed lights were then presented on a computer monitor that was cali-
brated and gamma-corrected.

The chromatic translations were applied to a central square region in the simu-
Iated images. We first shifted the chromaticities of reflected lights towards the ‘red’ end
of the L&M-cone axis at equiluminance, or towards the ‘blue-green’ end of the same axis.
Both translations lead one to perceive transparency, despite the absence of systematic
luminance changes in the lights from the surfaces. The central square area in figure 2a
{see color plate on page 475) shows an example of a chromatic translation towards the
‘red’ end of the L&M-cone axis. Figure 2b shows the uniform shifts in chromaticity of
the lights from the surfaces along the border of the transparent area, which are seen
both in plain view and through the filter, We hasten to point out that this and other color
figures are unlikely to reproduce exactly the calibrated images. We also created displays
with a central square region shifted in chromaticity along the S-cone axis towards
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either the ‘yellow-green’ half of the axis or the ‘purple’ halll These equiluminous shifts,

too, lead one to perceive transparency.

0.5 = 0.4 =
’ 1 ™ a
0.4 0.3 = 3 A
Ll N
o / T
03 0.2 -
M
v 02 . 03 04 05 o ' oY VT
- ) : ) 0.1 0. ) 04
b X 2b 2 X 03

Figure 1. Color transparency. (a) (color plate 1, Figure 2. Transparency with an equiluminous

facing page) Image of a yellow filter lying atop
an array of Color Aid® papers, acquired by an
RGB CCD camera; (b) shifts in chromatic-
ities of the lights from the papers in the CIE
1931 (x, y) chromaticity plane. The base of each
arrow represents the chromaticity of a surface
seen in plain view; the head of the arrow
represents the chromaticity of the same surface

translation. (a) {color plate 1, facing page) Image
of a translation towards the ‘red’ end of the
L&M-cone axis. An equiluminons modulation of
color that is invisible to the short-wavelength-
sensitive S-cones is applied to lights from a
centraf square region. The modulation, applied
to a neutral gray surface of average iatensity,
provides a contrast of about 6% to L-cones.
(b} Shifts in CIE 1931 (x, ) chromaticities of the

seen through the yellow filter.
lights from the simulated surfaces.

2.1.1 Transparency matches for equiluminous translations

We conducted experiments to measure the perceived strength of transparency caused by
shifts in chromaticity at equiluminance. Observers matched the strength of perceived
transparency of an equiluminous shifl to that of an achromatic standard.

2.1.1.1 Methods. Stimuli were presented on an Eizo FlexScan T562-T color monitor, which
observers viewed binocularly at a distance of 0.56 m in a dark room. Software on a
Compaq Prolinea 486 controlled a Cambridge Research Systems VSG/2 color graphics
board which was set to provide 12 bits of chromatic information for each of the 800 x 600
pixels presented on the monitor at a field rate of 100 Hz (noninterfaced). The display
subtended 32 deg wide by 24 deg high. The nonlinear relationship between applied
voltage and phosphor intensity was corrected, for each gun, with the aid of color lookup
tables. The chromaticities and luminances of the three phosphors of the monitor were
measured with a Minolta C8-100 chromameter. The mean huminance of the screen was
65 cd m™*; its mean chromaticity was (0.294, 0.303) for the CIE 1931 standard observer.

On the screen was displayed an 8 wide by 6 high array of colored squares (see
figure 3). The R, G, and B values of the squares were chosen randomly by independent
draws from a uniform distribution that permitted a maximum excursion of 50% con-
trast. On a scale of 0-100, R, G, and B values cach varied, independently, in the
range 25—75; the average gray of the display had R, G, and B values of 50, 50, and 50.
Superimposed on the array were two square regions in which the chromatic properties
of underlying squares were translated in color space. One of these superimposed
squares was generated by decreasing the luminosity of underlying pixels, and this
square served as the standard achromatic example of transparency. The position of this
achromatic standard, at either left or right, was varied randomly from ftrial to trial.
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Figure 3. Spatial properties of the display used
in the experiments on transparency matching.
Each square in the 8 wide by 6 high array sub-
tended 4 degx 4 deg of visual angle. The two
larger squares in which chromaticities were
translated are of size 10 deg x 10 deg.

The other superimposed square was generated by an equiluminous color shift, and
observers varied the chromatic contrast of this shift in an attempt to match the
strength of its perceived transparency to that of the achromatic standard.

Three color-normal male observers participated in the experiments. For each of
four hues, ten trials at each of six achromatic contrast levels (0.03, 0.075, 0.1, 0.125, 0.15,
and 0.175) were presented in random order to the observers. Observers adjusted the
physical color contrast of the equiluminous translation so that the two transparent
squares provided equally strong impressions of transparency. Observers pushed a
switch to signal that they had found a satisfactory match. At the highest two achromatic
contrast levels, 0.5 and 0.175, it was often impossible for observers to make a match
within the available range of chromatic contrast. In such cases, observers pushed
another switch to signal that no match was possible.

The four hues chosen were the red and the blue-green of the L&M-cone axis,
modulations along which are equiluminous and visible only to L. and M cones sensitive
to the long and medium wavelengths, and the vellow-green and purple of the S-cone axis,
modulations along which are equiluminous and visible only to the short-wavelength-
sensitive 8 cones {Smith and Pokorny 1975; Derrington et al 1984).

21.1.2 Results. The areas of achromatic translation looked like neutral density filters,
while the areas of equiluminous translation looked like colored but otherwise clear
filters. Matches were easy to set. Figure 4 shows the coler contrasts that are needed
for equiluminous translations to produce impressions of transparency that are equal
in perceived strength to those caused by achromatic decrements. Results are shown for
three observers (MD, top; PC, middle; and VL, bottom). Results for red and blue-green
shifts along the L&M-cone axis are shown by open and filled circles, respectively, at
the left. Results for vellow-green and purple translations along the S-cone axis are
shown by open and filled circles, respectively, at the right. The contrasts are shown in
units appropriate to the chromatic axis and are measured relative to the average gray
level of the display. Contrast along the achromatic axis (bottom) is in standard units,
while contrast along the L&M-cone axis (left) is in units of contrast to the L-cones,
and contrast along the S-cone axis (right} is in units of contrast to the S-cones.

For each observer and each hue, matches increase monotonically with increasing
contrast of the achromatic standard. Along the L&M-cone axis (left), as the contrast
of the achromatic standard was increased from 0.05 to 0.125, observers MD and VL
were able to set a match using color contrasts in the available range. These observers
could not match the achromatic standard at higher contrasts because of color gamut
limitations. Observer PC could make matches within the range 0.05 to 0.1, but above -
this range of achromatic conirasts matches were impossible to set. Similar results
were found by the three observers when using equiluminous translations along the
S-cone axis (right). With one exception, the amount of chromatic contrast needed to
match was nearly the same along opposite directions of a chromatic axis: the open
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Figure 4. Results of experiments in which the perceived strength of transparency that arises
from translations at equiluminance was matched to the perceived transparency of achromatic
standards. Three observers—MD, PC, and VL—matched equiluminous translations to lumi-
nance decrements presenting contrasts of 0.05 through 0.I5 {horizontal axes). (a) L&M-cone axis
matches, both for the ‘red” half of the axis {(open circles) and the ‘blue-green’ half of the axis (filled
circles). Units of contrast along the vertical axis are in terms of contrast to L-cones. (b) S-cone axis
matches, both for the ‘yellow-green’ half of the axis {open circles) and the ‘purple’ half of the
axis (filled circles), Units of contrast along the vertical axis are in terms of contrast to S-cones.

and filled circles lie atop one another. The exception is for observer VL when viewing
S-cone axis stimuli. In this case, purple translations were less effective than yellow-
green ones in providing transparency.

The ease with which the observers were able to make reliable matches of perceived
strength of transparency supports our informal observations that equiluminous transla-
tions lead to the perception of transparency.

2.1.2 Formulation of translation
We formulate translation in the CIE XYZ color space of human observer tristimulus
values (Wyszecki and Stiles 1982; Da Pos 198%). With this color space, one can often
obtain results that are useful in the many color spaces that are related by a linear
transformation {(cf Brainard 1995). For example, the RGB color spaces provided by the
phosphors of most television sets and computer monitors are related linearly to XYZ;
50, 109, is the color space LMS of human cone fundamentals (Smith and Pokorny 1975},
Suppose, then, that a surface reflects a light that is represented by a vector of
tristimulus values a = (X, ¥, 7,). A translation is a vector of tristimulus values
t=(X Y, Z,) that is added to the tristimulus values of the surface a to provide new
tristimulus values = (X, ¥, Z,):

h=a+r. D

Identical translations of the lights from many surfaces provide a systematic change in
color that is readily interpreted by the visual system. Our observations with equiluminous
translations and the results of matching experiments show that systematic changes in
luminance across-the border of a connected region are not necessary for the perception
of transparency. Translation in any direction of color space will work.
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2.2 Convergence

The work of Metelli (1974) with achromatic stimuli and that of Da Pos (1989) with
colored stimuli show that convergence in color leads to robust perceptions of transpar-
ency. Such convergence is shown clearly by achromatic stimuli wherein lighter surfaces
become darker and darker surfaces become lighter: surface lightnesses in the transpar-
ent region converge towards a central gray (eg ligure on page 43 of Metelli 1974;
figure 11 of Da Pos 1989). The region of convergence is perceived not only.as overlaid
by a transparent surface but also as having lesser contrast than the surrounding area.
This holds true also for heterochromatic examples of convergence (eg plates 3—6 of
Da Pos 1989). We show an example of convergence towards a mneutral gray point
in figure 5. The chromatic changes undergone by the surfaces represented in figure 5a
(see color plate 1 on page 475) are shown in figure 5b, and the motion towards the
center of convergence is clear.

The point towards which colors converge can vary over a wide range and stilf lead
to the perception of transparency. We generated displays of convergence, like that in
figure 5, for centers of convergence in six regions of color space, and present examples
in figures 6—8 (color plate 2, facing page). Figure 6a shows convergence towards ‘dark
gray’, while figure 6b shows convergence towards ‘light gray” Figure 7a shows conver-
gence towards ‘red” and figure 7b towards ‘blue-green’ along the L&M-cone axis.
Figure 8a shows convergence towards ‘yellow-green’ and figure 8b towards ‘purpfe’
along the S-cone axis. The perception of transparency is robust in all cases.

The opposite of a convergent motion is a divergent one. Informal observation
shows that divergence also leads to an impression of transparency, yet for many this
transparency is more strongly associated with the (convergent) background in which
contrast has been decreased rather than with the divergent figure.

It is of interest to determine whether systematic luminance changes are needed for
convergence to produce an impression of transparency. We examined this informally
using arrays of equiluminous rectangles. Within a central region, the color contrasts of
the rectangles were reduced to produce an equiluminous convergence of color. One
may still perceive transparency under these wholly equiluminous conditions, which are
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Figure 5. Convergence towards a neutral point in
color space. {a) {color plate 1, page 475) Color

0.2 . T " \ image. (b} Plot of chromaticity shifts in lights
02 0.3 04  from simulated surfaces along the border of the
5h X central square area.

Figure 6. Convergence towards achromatic targets {color plate 2, facing page). (a) Convergence
towards a dark gray (b} Convergence towards a light gray.

Figure 7. Convergence towards targets along the L&M-cone axis (color plate 2, facing page).
(a} Convergence towards red. (b} Convergence towards blue-green.

Figure 8. Convergence towards targets along the S-cone axis (color plate 2, facing page).
{a) Convergence towards yellow-green. {(b) Convergence towards purpie.
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similar to ones used in studies of contrast induction (Singer and D’Zmura 1994, 1995;
D’Zmura and Singer 1996).

2.2.1 Formudation of convergence

We follow Metelli (1974) and Da Pos (1989) in formalizing chromatic convergence as
movements of surface colors towards some target color along the line segments
in color space joining the surface colors to that of the target. Suppose that a surface
color is represented by a vector a of tristimulus values and that the target of conver-
gence is represented by vector g. Then the result is a vector b of tristimulus values
that lies along the line segment that joints @ and g This result & can be written as a
linear combination of @ and g in the following parameterized form:

hb={1-a)at+ag, O0<a<l. (2)

The parameter o determines the extent to which the tristimulus values b are changed
from a(o = 0) to g{a = 1) in convergent motion (or away from g in divergent motion
with = < 0). Convergent movement of the lights from many surfaces towards a single
target provides a systematic change in color that is readily interpreted by the visual
system.

Watanabe and Cavanagh (1993) note that it is possible for the lights from a surface,
seen both in plain view and under a transparent overlay, to undergo no change whatso-
ever. This can occur in the case where the original surface tristimulus values a are
identical to those of the target of convergence. Watanabe and Cavanagh point out that
the T-junctions found with such surfaces function as ‘implicit X-junctions’ and that
these can give rise to impressions of transparency.

2.2.2 Compositions of translation and convergence

It is possible to create chromatic motions that have both translatory and convergent
elements. Such composite motions create both a uniform shift in the colors of surfaces
and a reduction of contrast, just like a convergence to a non-neutral peint, as in
figures 6-8. Indeed, the result of composing a translation and a convergence in color
space is a convergence. This can be shown as follows. Suppose that to a convergence,
like that expressed in equation (2), is added a translation ¢ The resulting color will
then be represented by a vector b of tristimulus values that is given by the following
formula:

b={(1-aatag+¢t, 0Ll K}
Yet this can be rewritten as a convergence as follows:
b= {l —alatuag, (4a)

in which the new center of convergence g’ is given by
1
g" =g o &t . (4b)

This result Is not surprising if one recalls that a translation is a convergence to
an infinitely distant point. A similar calculation shows that the composition of two
convergences is yet another convergence, from which one concludes that the set
of convergences is closed under compesition.

2.3 Curl and shear

Translation and convergence are special motions in consequence of the ability
to express them with the sole use of colors that lie along a single axis in color space.
This axial nature of the motions is evident if one considers translation and con-
vergence in achromatic images, in which all colors lie along the achromatic axis.
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Two other fundamental motions in three-dimensional vector spaces include rotation
(curl) and shear (deformation). Neither rotation nor shear, however, can be expressed
as motions among colors that lie along a single axis and, as we shall see, neither leads
to robust perception of transparency. .

Figure @ shows an example of chromatic rotation. The image in figure 9a (see
color plate I, page 475) shows surfaces with chromaticities that rotate about a neutral
gray as they pass from plain view to a position under the region of rotation. Visible
are a blue surface that becomes red (within the putative region of transparency), a
red surface that becomes orange, an orange surface that becomes yellow-green, and
a yellow-green surface that becomes green. The corresponding chromaticity changes
are shown in figure 9b. It is possible to use smaller or greater rotations in color
space to create images with less rotation or more rotation. But in all cases of
rotation that we have investigated the transparency percept is broken. There may
be areas within the putative overlay figure in which transparency is perceived, but
these arecas are formed by the fortuitous adjacency- of surfaces with colors that
change in the same direction: the transparency that is perceived can be attributed to
accidental translation. '
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Figure 9. Chromatic curl. (a) (color plate 1) Figure 10. Chromatic shear. (a) (color plate 1)
Color image. (b} Change in chromaticities. Color image. {b) Change in chromaticities. See
See text for discussion. text for discussion.

Figure 10 shows an example of chromatic shear. The image in figure 10a (see color
plate 1, page 475) shows surfaces with chromaticities that are deformed about a neutral
gray as they pass under the putative region of transparency. In this example, yellowish
surfaces become more red, and bluish surfaces become more green. Surfaces with
colors along a red-green axis undergo no change. Figure 10b shows the change in
chromaticities. As was the case with rotation, the transparency percept is broken.
In all examples of shear that we have investigated, one can attribute the transparency
that remains to an accidental adjacency of surfaces that leads to transparency through
translation.

Please note that, because our observations have been less than exhaustive, we
cannot rufe out the possibility that there may be certain rotations and shears that
lead directly to the perception of transparency. However, such examples remain to be
created.
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3 Detection and separation
The resuits of the observations suggest that we can detect transparent overlays by
examining X-junctions with chromatic changes that are consistent with translation or
convergence or both. Below, we present an algorithm that operates on color images
to detect such transparent regions and then separate the chromatic properties of the
overlay from those of underlying surfaces. The steps in the algorithm are:

e identification of contours and intersections;

¢ creation of an X-junction adjacency graph (XJAG);

s determination of the contour of the transparent overlay by using spatial smoothness

and chromatic coherence constraints;

« scparation of the transparent overlay from underlying surfaces.

‘We consider now each of these in turn.

3.1 Identification of contours and intersections

The algorithm uses region growing to segment the image into bounded regions of
homogeneous color (Gonzalez and Wintz 1977; Russ 1995). One grows a region around
a starting pixel by including neighboring pixels that have a color sufficiently similar
to that of the starting pixel. The region boundaries form contours. For each pixel
along these contours, we determine the direction of the spatial tangent vector and the
change in color across the contour. To identify intersections, we count the number of
distinct colors in the neighborhood of sach pixzel. T-junctions have three neighboring
colors and X-junctions have four.

Figure 11 {color plate 3, facing page) shows the result of applying this first stage
of processing. The input image, shown in figure 1la, is a simulated image with a trans-
lation in a dark-red direction. The contour and intersections are shown in figure 11b.
We represent each contour here by a pair of colors centered chromatically about
neutral gray, the difference between which is identical to the chromatic difference
across the contour. Each intersection is marked by a white spot.

Determining the positions and chromatic properties of region contours is critical
to the algorithm, which depends on the analysis of X-junctions and their chromatic
changes. Segmentation through region growing works well on simulated images of the
sort in figure lla: each region is homogeneous and the contours are sharp. The
segmentation works far less well with regions that are nonuniform or that lack sharp
edges. This problem is raised again in section 4.

3.2 Creation of an X-junction adjacency graph (XJAG)

We use the contour and intersection to create an X-junction adjacency graph (XJAG).
Towards this end, we first create a contour adjacency graph (CAG), in which contours
and junctions are represented by nodes, and adjacency among contours and intersections
is represented by links among the nodes (see figure 12a, color plate 3, facing page).
The nodes are represented by colored spots and the links by black line segments. Each
white spot represents an intersection—either a T-junction or an X-junction. The yellow
spots around the border of the image represent T-junctions along the border, which we

Figure 11. Algorithm: Input and contour detection (color plate 3, facing page). (a) Input image.
(b) Color difference contour with intersection image. The spurious white line segments in the
latter are caused by very thin regions in the input picture; the test for the number of neighbor-
ing colors for pixels within such regions has returned the value 3 (T-junction) for each pixel in
several of these regions.

Figure 12. Algorithm: Adjacency graphs (color plate 3, facing page). (a} Picture of a contour
adjacency graph (CAG) for the image in figure 11a. White spots represent intersections; yellow dots
along the border represent T-junctions along the image border. Other colored spots represent
contours. The links represent adjacency. (b} Picture of an X-junction adjacency graph (XJAG)
for the image in figure ila. White spots represent X{unctions, and links the adjacency relation-
ships among the mediated by image contours.
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include in our analysis in order to be able to detect transparent overlays that lie along
the image border. The other spots repiesent contours, and the links in the graph
represent spatial connection between these interactions and contours. Such a graph is
similar in spirit to a region adjacency graph, in which regions determined by segmenta-
tion are represented by nodes, and adjacency between regions is represented by links
{Pavlidis 1980; Schettini 1993). The difference is that the nodes in the CAG are region
contours and intersections rather than the regions themselves.

The XJAG is formed from the CAG by (i) changing the representation of contours
from nodes to links and then (ii) removing T-junctions, unless they are on the border
of the image (see figure 12b, color plate 3, page 482)). Each node (white spot) repre-
sents either an X-unction or a T-junction along the image border. The links in the
XJAG contain adjacency information, the spatial tangent vectors of represented con-
tours, the chromatic change vectors, and contour labels.

There are several possible circuits through the X-junctions represented in the
XJAG of figure 12b. One such closed circuit is the path through the T-junctions along
the border, which includes the entire image. There are several circuits through the
X<junctions in the center of the image; one of these circuits corresponds to the trans-
parent overlay. In addition, there are several circuits which include the T-junctions in
the upper-left corner of the image and pass through the center of the image and,
finally, several circuits which include the T-junctions in the lower-right corner and pass
through the center of the image. Even very simple images like the one in this example
(figure 11a, color plate 3, page 482) typically contain many circuits.

3.3 Determination of contour through analysis of spatiochromatic change

The algorithm attempts to find, if possible, a closed circuit through junctions that lie
in the center of the image that satisfy smooth contour and coherent chromatic change
constraints. Failing this, it searches for circuits that include T-junctions along the
image border and junctions in the image center that meet the constraints.

3.3.1 Smooth continuation

The algorithm uses the spatial tangent vectors to the contours in the XJAG to find
the smoothest contour through the X-junctions. The smoothest continuation through
an individual X-junction is determined by evaluating changes in contour direction on
either side of the X-junction. If the smoothest circuit includes a change in contour
direction that is too great (the difference in angle is larger than some threshold), then
the circuit is classified as not smooth,

In many cases, the smooth-continuation constraint effectively identifies 2 smooth
contour through central X-junctions that corresponds to the border of the transparent
region. This is far from sufficient, however. Consider a square array of randomly
colored regions. At each corner one would find an X-junction. The algorithm would
find many smooth circuits through X-junctions in the center of the image, and most
likely none of these circuits would correspond to a transparent region, One could
color several of the squares in a way that leads to the impression of transparency,
however. For the algorithm to detect this transparent region, it must evaluate chro-
matic change along each circuit, both to eliminate regions that are not transparent and

to detect ones that are.

33.2 Chromatic coherence

There are many ways to test whether chromatic changes are consistent with transla-
tion or convergence in color space. A first distinction among methods is whether tests
are applied locally and individually to the four colors found at each X-junction, or
globally and simultaneously to all colors found along the candidate contowr of a
transparent region. We use both methods. The desirability of detecting transparent
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overlays that have spatially heterogeneous chromatic properties prompts us to use
local tests for detection. The need to estimate the chromatic parameters of a transpar
ent overlay leads us to use global methods for identification. A second issue is precision.
For example, how much of a deviation {rom a rigid shift in color space should the
algorithm tolerate in a candidate translation? We propose rules that ignore the magni-
tudes of color changes and test only whether color changes are in the proper direction,
within some angular tolerance.

3.3.2.1 Translation. A local test for translatory change checks directly whether the four
colors found at an X~junction are consistent with a translatory change. Refer to figure 13.
The two colors @ and b must differ, as must the two colors ¢ and 4 Furthermore,
the difference in color v, = ¢ —a must point in approximately the same direction
as the difference in color v, = d — b We formulate this last constraint as follows:

Ui (5a)
o, 1w |
The left-hand side is the dot product of the two difference vectors, normalized by the
lengths of the two difference vectors. This is the cosine of the angle between the two
vectors. The rule thus specifies that the cosine of the angle between the two vectors must
exceed some threshold s or, equivalently, that the angle between the two vectors must
be less than some corresponding threshold £

Lo, 0) <1, (5b)
a b
c d
Figure 13. Four surfaces at an X-junction with tristimulus value
vectors a, b, ¢, and d. See text for discussion.

We performed Monte Carlo simulations of the changes in the lights from pairs of
surfaces to validate this rule. Simulated reflectance functions of 1024 surfaces were
generated randomly with the use of the nine-dimensional Fourter stochastic linear model
(Appendix A). These reflectance functions were then multiplied, wavelength by wave-
length, by CIE daylight illuminant D;; (Wyszecki and Stiles 1982). Pairs of spectral
distributions from this set of simulated lit surfaces were then drawn from this set. For
each of 10000 pairs, chromatic change vectors were calculated for each member surface
when seen in plain view and when seen under one of three transparent filters. We used
single-pass filtering by broadband (Corning 1-57 glass), orange (Schott FG9 glass), and
blue (Kodak Wratten 80C) transmission spectra (D’Zmura 1992) in these calculations.
The vectors were either three-dimensional vectors of tristimulus valves in the CIE XYZ
space or two-dimensional vectors of chromaticities in the CIE (x, y) chromaticity plane.
For each pair of surfaces, we recorded the angle between the three-dimensional tristimulus
difference vectors and the angle between the two-dimensional chromaticity difference
Vectors.

We plot the results in figure 14. For each filter, the dark curve shows the cumula-
tive frequency of angles between two-dimensional chromaticity differences, and the
light curve shows the cumulative frequency for three-dimensional tristimulus value
differences. Most of the angles are Iess than 30° and almost all are less than 45°
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Figure 14. Cumulative frequencies of the angles between the chromatic change vectors for three
filters (Corning 1-57 glass), orange {Schott FG9 glass), and blue (Kodak Wratten 80C) found in
either the CIE X¥Z color space or the CIE (x,)) chromaticity plane. From left to right: the
cumulative frequencies for the chromaticity difference vectors (dark curves) found at 30° are 93.1%,
83.4%, and 89.4%; and at 45° are 98.7%, 94.4%, and 98.6%. The cumulative frequencies for the
tristimulus value difference vectors (light curves) found at 30° are 92.3%, 83.5%, and 84.5%:; and
at 45° are 99.5%, 96.3%, and 97.3%.

The results suggest that the rule for determining whether colors at an X-junction are
consistent with translation [equation (5b)] works best with a threshold in the range 30° —45°.
The simplest global test for translatory change is to determine the average color
change f across the contours of a candidate circuit and then check whether the change
found at each piece:'of contour lies in the same direction as the average translation £:

v"'tﬂ =5, Vi (6)

v, |7]

This rule can be used to detect a circuit with a uniform color translation and provides
an estimate of this translation.

The global test fails to detect heterogeneous translations, however. Figure 15 {color
plate 1, page 475) shows an example. The circular overlay in this figure is an equilumi-
nous translation that varies in hue as a function of polar azimuthal angle, measured
relative to the center of the figure, to create a color circle. The translation varies in
saturation as a function of distance from the center; it ramps linearly between zero at
the center and its maximal value at the circle border. _

The average translation around the circuit of the transparent region in figure 15 is
zero, and the global rule [equation (6)] fails miserably to detect the transparent region.
Yet the local rule Jequation (5a) or (5b)] works well to detect the region, because the
color change at each X-junction is consistent with translatory change. This suggests
that one should use the local rule to detect transparent regions and a global procedure
to identify the parameters of a translation for use in color separation.

3.3.2.2 Convergence. A local test for convergent motion at an X-junction is to check
whether the distance |2 — 8| between twoe colors in plain view at an X-junction (see
figure 13, facing page) is greater than the distance |e — d| between the corresponding
colors on the potentially transparent side of the X-junction,

There are two ways to estimate globally the parameters of uniform convergence.
In the first the amount of convergence and the target of convergence are estimated
sequentially, while in the second they are estimated simultaneously.

This figure is on color plate 1, page 475

Figure 15, Local but not global coherence: changing color filter properties. See text for discussion.
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The first way depends on noting that the sum of the original color vector @; of a
surface and a certain amount § of the difference », = b, — a; between the new and
the original color vectors of this surface equals the point g of convergence:

a +, = g. (7)
Because this holds true for all surfaces along the border of the transparent area, we

can require that the squared difference between each surface’s expression for g, for
each possible pair of surfaces, be minimal:

I i 3
%ZZZ(Q‘% + Pog 273 77)%]()2 =0, it

i=l j=1 k=i

where i and j run over the number » of surfaces and & runs over the three dimensions
of each celor vector. This minimization provides a global estimate % of the scalar in
equation (7), which can then be used to determine globally an estimate § of the point
of convergence.

A second method uses a singular value decomposition (Press et al 1988) to estimate
simultaneously the parameters of a uniform convergence. Suppose that there are »
surfaces along the border of the candidate transparent area that are seen both in plain
view and through the filter. Then for each surface we have from equation (3):

b = (1-o)a; +og, i=1,..n, (9a)
which may be rewritten as follows:
b, = P, +g, i—1,.,n. (9b)

The latter is a set of simultaneous linear inhomogeneous equations for which a singular
value decomposition can provide a least-squares solution. The equations generalize the
model of Gerbino et al (1990) from the case of two achromatic surfaces to the case of
arbitrarily many color surfaces. One may rewrite equation (9} in matrix-vector form to
make clear the applicability of the singular value decomposition (Press et al 1988):

a1 0 077p by,
@y 01 0fg by
a13 0 0 1 gi = b13 ) (10)

in which the numbers a; (i=1, .., »; j=1, 2, 3), are the tristimulus values of the ith
surface when seen through the transparent filter. Two such surfaces suffice to provide
more equations (3#) than unknowns {4).

This method can be used to recover the parameters of an arbitrary uniform conver-
gence (or, as a special case, an arbitrary uniform translation; see section 2.2.2). It is
applied to the chromatic changes along the border of a candidate transparent region
to determine the extent to which the changes are coherent and to estimate the parameters
of the changes. The major drawback of this method is its reliance on the assumption of
filter uniformity—it cannot handle cases like that in figure 15.

3.4 Separation of transparent overlay from underlying surfaces

Figure 16 (color plate 3, page 482) shows the separation of the input image into repre-
sentations of the chromatic properties of the transparent overlay (figure 16a) and the
surfaces (figure 16b). To recover the colors of surfaces that are seen both in plain
view and through the overlay, the algorithm simply propagates the plain-view chro-
matic properties into the region of transparency. For surfaces that lie entirely within
the region of transparency, the algorithm uses the estimate ¢ of the translation, found
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for this sample image, to undo the change in surface color. Recall that the effect of
the translation is to add a translation t to the original color a to create the observed
color b seen through the overlay [equation (1)]. The estimate & of the original surface
chromatic properties is thus found through the inverse operation: subtracting the esti-
mated translation from the observed color:

i—b-1. (11)

The separation in the case of convergence proceeds in the same manner. The chro-
matic properties of surfaces found in plain view are propagated within the transparent
region. For surfaces that lic entirely within the transparent region, estimates of the
convergence parameters are osed to invert the convergence. The global estimates £ and
&' of the ‘amount’ and ‘target’ of convergence, respectively [see equations (9) and (10)],
are used together with the observed color & of equation (2) to provide an estimate &
of the original color:

i=2% (12)
B
This rule works well to reconstitute surface color in regions of uniform chromatic
convergence. Note that in cases of translation the estimated parameter § is close to
one, and the procedure for convergence [equation (12)] reduces to that for translation
[equation (11)].

This figure is on color plate 3, page 482

Figure 16. Algorithm: Separation of transparent overlay from surfaces for the image in figure 1la.
(a) The filter. (b) The surfaces. See text for discussion.

4 Discussion
Perceiving a transparent region depends on the visual detection and identification of

a process that causes lights from surfaces to change systematically. We have found
that the systematic changes in color to which observers are sensitive are translation
and convergence.

Translation corresponds to what had earlier been identified as subtractive color
mixture by Beck (1978) and multiplicative transparency by Kersten (1991). Each of
these appellations is associated with a physical model of transparency, even though
physical transparency is neither a necessary nor a sufficient condition for transparency
perception (Metelli 1974). Translation in color space, on the other hand, is expressed
directly in terms of human color perception. Translations provide a first-order approx-
imation to a wide range of multiplicative filters and generalize this class of filtering
to include physically unrealizable cases like equiluminous color shifts.

Convergence corresponds to what had earlier been identified as additive color
mixture by Metelli (1974) and others. The additive mixtures of two colors span a plane
in a standard three-dimensional color space. To generate colors on the line segment
joining two colors, one must simulianeously add light to one color and subtract light
from the other [equation (2)], ie for transparency one requires highly constrained
additive color mixtures. Viewing such mixtures in a three-dimensional color space
suggests immediately the more informative term convergence.

We readily perceive compositions of translation and convergence, which are again
convergences, as transparent (figures 68, color plate 2, page 479). The parameters that
describe such convergences are two: the colour vector of the center of convergence, and the
scalar degree « of convergence [equation (4)]. It is of some interest to determine whether
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human observers can distingunish between these parameters when making judgments of
color transparency. In many psychophysical studies of transparency, only one form
(translation) or another (convergence) of transparency is considered, and joint judgments
of transparency parameters are not elicited. However, Gerbino and colleagues {1990) have
shown that observers make settings in an achromatic matching task which are consistent
with a scalar version of egquation (9b) that has a multiplicative constant and an
additive constant. Study of the color figures (eg figures 6—8, color plate 2, page 479)
suggests that one can estimate both types of chromatic parameters; one awaits an
experimental characterization of human performance in such an estimation task.

The perception of transparency with equiluminous shifts shows that systematic
changes in luminances are not required for transparency to be perceived. It is important
to note that there is no common, natural process that produces equiluminous translations.
For a light to remain equiluminous when shifted, one must both subtract light in one
region of the spectrum and add light in another region of the spectrum to balance
the luminance. If one has several surfaces with hues that span the spectrum, then if is
impossible for either episcotisters or natural filters with spatially uniform properties
to produce such equiluminous shifts. There is no ready explanation in terms of multi-
plicative models or subtractive color mixture. Clearly, one must base the study of
transparency perception on perception itself, rather than on physical models.

By representing systematic chromatic change in terms of vector fields in color
space we have been led to examine stimuli with a larger than typical number of
surfaces. Most studies of transparency perception work with a total of four colors,
created by a putative filter that overlies two surfaces (eg Metelli 1974; Beck et al 1984;
Fukuda and Masin 1994). This restricted situation can give rise to ¢uestions that are
more readily answered when one considers more complex stimuli. For instance, Metelli’s
estimates of transparency are based on an assumption of ‘balanced” transparency,
wherein the degree of transparency [convergence parameter ¢, equation (2)] is assumed
to be constant for all surfaces. The visual system makes no such assumption of homo-
geneity (Fukuda and Masin 1994): using many surfaces one can easily demonstrate
that the transparent overlay is free to vary (figure 15, color plate I, page 475). The real
problem is finding how the visual system separates a heterogeneous overlay from
underlying surfaces.

The detection and separation algorithm presented here is designed primarily to
illustrate the role of translation and convergence in color space. Its spatial processing
is not sophisticated. In particular, the region growing scheme that is used for contour
and intersection determination is weak. A first problem is the inability to segment
properly images that include noise or, more generally, chromatic change across single
surfaces. Second is the divergence between this sort of scheme and current knowledge
concerning human visual processing, which analyzes color images at multiple spatial
scales (Watson 1987, D’Zmura 1997). We hope to address this problem in future work
by using a more robust scheme for color image segmentation.

The algorithm does have several strengths. It can detect transparent regions that
lie along the image border through consideration of T-junctions. This is accomplished
through the inclusion of T-junctions along the image border within the XJAG.
Indeed, there are two arguments in favor of retaining all Tqunctions in the determina-
tion of the contour of a transparent region. The first is the possible presence of
implicit X-junctions (Watanabe and Cavanagh 1993). A second argument is the apparent
ability of T-junctions to terminate the contour of a transparent region within the
center of an image. Consider the curl example in figure 9a (color plate 1, page 475).
The blue-green change at the top left of the central square region is an accidental
translation which forms a small region of transparency. This region appears to be
bounded below by at least one T-junction, namely that between the blue, green, and
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gray surfaces in the center of the image. We eliminated ‘central’ Tunctions in our
algorithm to reduce the number of possible circuits that must be considered; ceniral
T-junctions are readily admitted back into the coherence computation, however.

Another strength of the algorithm is its ability to detect heterogeneous transparent
regions like that in figure 15 (color plate I, page 475). The local tests for translation and
convergence make this possible. Furthermore, the procedures for estimating the global
parameters of translation and convergence let us perform a color separation of trans-
parent overlay and underlying surfaces when the overlay is spatially uniform. The most
interesting problem that remains to be solved, again, is how to separate spatially non-
uniform overlays from underlying surfaces.
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APPENDIX A

We apply a stochastic linear model (D’Zmura et al 1995) to generate surface reflectance
functions for use in simulated images (eg figure 2a, color plate 1, page 475). Such a
reflectance function is generated by a model that combines linearly the first nine terms
in a Fourier series analysis of functions on the interval [400, 700] nm of visible wave-

lengths. The model has the form:

4

R(x) = ¢, + Z(af cos 2nfx + by sin 2mfx) , {AD)

F=1
where x is a wavelength variable that has been transformed to range linearly from
0 to 1 over the interval 400 to 700 nm, respectively: x = (1 — 400)/(700 — 400), for
A € {400, 700] nm.

The nine random coefficients e,, @,, @, &, &4, by, by, by, and b, in the expansion
(Al} are chosen in a way to generate only physically realizable reflectance functions,
namely functions that take on values only in the interval [0, 1]. They are chosen in
order of increasing frequency. The average term ¢, is beta distributed. The beta distribu-
tions form a family with two parameters that control the mean and variance of the
distribution (Hogg and Craig 1978). A beta distribution is nonzero only on the interval
10, 1], so that the {constant) reflectance functions generated by this term of the model
alone are physically realizable.

Having sampled the beta distribution to generate a particular value ¢, one then
selects the amplitude ¢, = (¢? + )" of the sinusoidal component at frequency 1 from
a distribution that takes on values only on the interval [0, min(c,, 1 — ¢,)]. One such
distribution is the uniform distribution on the interval [0, min{c;, I — ¢;)]- Yet what is
important is the interval, which ensures that the entire range of saturations can be
generated, given the constraint of physical realizability and the prior choice of ¢,. The
phase of the component at frequency 1 is chosen from the uniform distribution on {0, 27].

Coefficients for frequencies 2, 3, and 4 are found in the same way. Having chosen
amplitudes ¢, through ¢,_,, one chooses the amplitude ¢; from a distribution that takes on
values only in the (remaining) interval [0, min Z;:O ¢, 1— Z};}O ¢;)|; again, the phase is
chosen randomly.

p @ 1897 a Pion publication printed in Great Britain




