FORUM Short Paper

Virtual Environments with Four or More Spatial

Dimensions

Abstract

We describe methods for displaying complex, texture-
mapped environments with four or more spatial dimensions
that allow for real-time interaction. At any one moment in
time, a three-dimensional cross section of the high-dimen-
sional environment is rendered using techniques that have
been implemented in OpenGL. The position and orienta-
tion of the user within the environment determine the 3-D
cross section. A variety of interfaces can be used to control
position and orientation in 4-D, including a mouse
“freelook” interface for use with a computer monitor dis-
play, and an interface that uses a head-tracking system with
three degrees of freedom and PINCH gloves in combina-
tion with a head-mounted display. The methods avoid the
use of projections that require depth buffering in greater
than three dimensions and can be used in conjunction with
either 2-D or 3-D texture mapping. A computer graphic
engine that displays 4-D virtual environments interactively
uses these methods, as does a level editor and modeling
program that can be used to create 4-D environments.

1 Introduction

The visualization of objects in high-dimensional
space has long been the province of mathematicians and
computer graphics specialists eager to visualize high-
dimensional manifolds (Noll, 1967; Steiner & Burton,
1987; Banchoff, 1990; Feiner & Beshers, 1990; Han-
son & Heng, 1992; Hanson, Munzner, & Francis,
1994). Most of this work has focused on techniques for
the high-quality rendering of objects in four dimen-
sions, and wonderful pictures and movies have resulted.
These techniques use geometric projections that neces-
sitate depth buffering in 4-D (Hollasch, 1991). The
current limitatdons of computer graphics hardware rele-

Presence, Vol 9, No. &, December 2000, 616631
© 2001 by the Massachusetts Institute of Technology

616 PRESENCE: VOLUME 9, NUMBER 6

gate depth buffering in four or more dimensions to soft-
ware, and the result is the noninteractive rendering of
single pictures. Work that does provide an interactive
interface for high-dimensional visualization has either
relied on graphics supercomputers or has sacrificed vi-
sual quality by using wireframe or other simple models.

In an effort to provide both visual quality and interac-
tivity, our technique for displaying and interacting with
environments that have four or more spatial dimensions
uses current 3-D computer graphics technology as
much as possible. The principle of the technique is a
simple one: if the observer of the high-dimensional en-
vironment does not know how to engage the interface
to the higher dimension(s), then the user experiences
the geometry of a normal 3-D environment. The princi-
ple is implemented by using observer position and ori-
entation to determine a 3-D cross section of the high-
dimensional world. Cross section determination does
not require depth buffering, and the 3-D cross section is
rendered using standard techniques of 3-D computer
graphics, including veridical texture mapping.

In this paper, we describe methods for the interactive
display of 4-D environments. These methods generalize
readily to the display of environments with four or more
dimensions. We then describe results with two programs.
The first is a computer graphics engine that displays 4-D
virtual environments interactively; it resembles a 3-D ac-
tion game. The second is a level editor and modeling pro-
gram that is used to create 4-D virtual environments. The
engine and the level editor run well on a personal com-
puter. Environments created using the techniques de-

Michael D’Zmura

Philippe Colantoni
Gregory Seyranian
Department of Cognitive Sciences
University of California, Irvine
Irvine, California USA

DZmuraetal. 617

scribed herein were first presented by Seyranian and col-
leagues (1999) in work on human search and navigation in
four-dimensional environments.

2 Methods

We describe an observer with a position and a
viewing orientation in 4-D space, and objects in that
space with boundaries that are determined by polyhe-
dra. The position and orientation of the observer can be
used to define a 3-D cross section of the 4-D space, and
this cross section can be projected onto a 2-D image
plane using standard techniques of computer graphics.
The visual quality of rendered environments is improved
by texture mapping. Objects in 4-D can be texture-
mapped so that their geometric properties are conveyed
faithfully and generally in 2-D projection; the imple-
mentation uses either 3-D or 2-D texture mapping.
With these notions for the display of 4-D environments
in hand, the generalization to the case of #D environ-
ments for values of # = 4 is then presented. Fundamen-
tal notions of 4-D vector spaces are reviewed briefly in
Appendix A.

2.1 Methods for the Display of 4-D
Environments

2.1.1 Geometric Primitives. The boundaries of
4-D objects may be approximated using polyhedra in
much the same way that the boundaries of 3-D objects
may be approximated using polygons. Each polyhedral
boundary element has vertices that can be represented
by 4-D vectors.

We define four polyhedra with four, five, six, and
cight vertices, respectively, to be geometric primitives.
These polyhedra are depicted in figure 1.

Eight cubes (regular octahedra) can be used to make
a hypercube, which is perhaps the best-known 4-D ob-
ject. To understand its construction, consider cubes of
lesser dimension. (See table 1.) A 1-D interval, namely a
line segment, is bounded by two 0-D points that specify
its length. A 2-D interval (plane area) is bounded by
four 1-D intervals, namely its four sides. If one supposes

Figure |. Polyhedra used as primitive boundary velume elements,
shown in canonical onentation with shaded front faces. From top to
bottom: octohedron, hexahedra with trangular and rectangular front
faces, pentahedra with triangular ond rectangular front faces, and
tetrahedron.

that this plane area is oriented along the X and 7 axes,

the arca can be described by the product [X, Xinax] X
[Yimins Ymax) Of the intervals. A 3-D interval (rectangular
volume) is bounded by six 2-D intervals, namely the six
faces of a rectangular solid. The volume can again be

6§18 PRESENCE: VOLUME 9, NUMBER 6

Table I. Cubes of various dimension

Number of

boundary Number of
Entity Dimension elements vertices
line segment 1 2 2
square 2 4 4
cube 3 6 8
hypercube 4 8 16
n-cube n 2n 2"

described by the product [X iny Xmax) X [Vmins Ymax) X
[Zimins Zmax] Of the intervals.

Consider now a hypervolume centered on the origin
and oriented along the X, ¥, Zand Waxes. The hyper-
volume can be described by the four-way product of its
intervals and is bounded by eight rectangular solids.
Each of these solids is found by holding fixed the value
along one axis and allowing values along the other axes
to vary. For instance, one finds a volume along each end
of the X axis: the first is the volume [V,ins Ymax] X
[Z s Zaieed X [®] located at value x,,;,,, and
the second is the same volume positioned at x,,,.. The

min> “max

other six volumes are found in a similar fashion.

If the sides of the hypervolume are all of equal length,
then the hypervolume is a hypercube, and its boundary
elements are each cubes. A hypercube is a 4-D box
when viewed from outside and is a room of simple
shape when viewed from inside.

2.1.2 Pipeline. Figure 2 shows the pipeline for
geometric information processing. The boundary ele-
ments of the virtual environment are each represented
by a list of vertex coordinates expressed in the global
coordinate system. This information must be trans-
formed so that the environment can be displayed using
3-D graphics technology. The user interface lets one
control viewpoint position and orientation in the high-
dimensional environment. Current position and orienta-
ton determine a 3-D cross section of the boundary ele-
ments to be displaved. The cross section determination
is performed only on boundary elements that have not
been culled in a viewpoint-dependent fashion. The im-

Interface Environment Database
Viewer Position Boundary Element Boundary Element
and Orientation Vertices Texture Coordinates
e e e Culling
’ Cross-Section
Determination
Triangulation
Global-to-Local
_—-+ Coordinate
Transformation

3D Rendering
{e.g.. OpenGL)

Figure 2. Pipeline for processing geometric information. See text for
discussion.

mediate result of cross section determination is a set of
polygons that must be triangulated. Vertices of the re-
sulting triangles are then transformed from global to
local, viewer-centered coordinates for immediate ren-
dering by the 3-D engine.

2.1.3 Observer-Dependent Cross Section.

We now describe in detail the cross section determina-
tion. Observer position is represented by a 4-D vector
p = [ps P, P. P]"- Observer orientation is represented
by a vector q of unit length or, equivalently, by a 4 X 4
rotation matrix Q that describes the rotation of some
canonical orientation vector q' into the current orienta-
tion q. The canonical orientation vector is simply a
reference vector and may, for instance, correspond to
an initial orientation for the observer such as q" =
[00-10]%.

The computation of the 3-D cross section determined
by the observer’s position and orientation is best con-

DZmuraetal. &19

v

Figure 3. The hidden axis and observer orientation. See text for
discussion.

ceived in terms of the axis that is perpendicular to the
3-D cross section. This “hidden axis” will change in
response to observer motion. It is readily computed us-
ing the matrix Q that describes the observer’s current
orientation. In particular, if the coordinates of the unit
vector h" along the hidden axis are known when the
observer is in the canonical orientation q’, then the
matrix Q applied to h' will produce the current hidden
axis h:
h=Qh". (1)

For example, suppose that the observer is located at the
origin of the global coordinate system and is facing in
the direction of the —Z half-axis (figure 3). To the right
and left of the observer lic the — X and + X half-axes,
above and below are the + Y and — Y half-axes, and for-
wards and backwards lie the —Zand + Z half-axes, re-
spectively. The 3-D subspace spanned by the X, Yand Z
axes is orthogonal to the hidden Waxis, which is repre-
sented by the unit vectorh’ = [0 0 0 17". If, at some
later time, the orientation of the observer is represented
by the rotation matrix Q, then the current hidden axis
(viz. local W axis) is simply Q [0 0 0 1], namely the
fourth column of matrix Q.

The current value of the observer along the hidden
axis h determines which cross section is taken perpen-

dicular to h. The observer’s position g along the hidden
axis h is given by

Jg=p-h (2)

The idea, then, is to display only the 3-D subspace that
lies perpendicular to the current hidden axis and that
has the same position along the hidden axis as the ob-
server.

Our method for determining 3-D cross sections of
polyhedra lying in four-space involves checking each
edge of every polyhedron for intersection with the 3-D
cross section. To detail this procedure, suppose that two
vertices vy and v, of a polyhedron lie along an edge.
Edge position may be parameterized by expressing a
point e along it as a combination of the vertex v, and
the vertex v,:

e=(l—a)vi+av,,a€[0,1].

(3)

For the point e to lie within the current 3-D cross sec-
tion, its position along the hidden axis h must be identi-
cal to that of the observer:

e-h=4g4 (4)

By combining equations (3) and (4), one finds the value
of parameter a for which the cross section intersects the
edge:

a={(g—v+h)/(v;-h~v-h) (5)

If the value of a is found to lie between 0 and 1, then
the cross section intersects the edge. A zero-valued de-
nominator corresponds to the situation in which the
cross section is parallel to the edge.

The current 3-D cross section may intersect a given
boundary element not at all, at just a single point, along
a line segment, in a polygon, or in a volume. The only
cases that we render are those that result in polygons.
The primitives that we use give rise to planar polygons
that are triangulated prior to transmission to the 3-D
graphics engine.

2.1.4 Culling. Note that one may define the di-
rection of the vector normal to each boundary element
and thereby define front volumes and back volumes.

620 PRESENCE VOLUME 9, NUMBER 6

Volumes facing towards the back may be culled prior to
cross section determination in the interests of efficiency.
We implement back-volume culling by checking to see
whether the normal n, applied to each vertex v of a
boundary element, faces away from the observer at posi-
tion p. If the inequality

(v-p)nz=0 (6)

is true of each vertex, then the boundary element is ig-
nored in further calculations. Note, in addition, that
boundary elements that lie entirely behind the observer
need not be subject to the cross section calculation. If
the inequality

(7)

holds true for each vertex v of a boundary element for

(v-p)-q=0

observer position p and orientation q, then the element
may safely be ignored in the cross section determina-
tion. A restriction on the field of view that can be ex-
pressed in terms of a half-field angle B can be used to
climinate a greater number of boundary elements. If the
inequality

(8)

holds true for all vertices v of a boundary element, then

(v-p%q/(w—pHM)EcmB

the entire element lies outside the cone with half-angle
B that describes the field of view. Back-volume culling
and location behind are two among a number of visibil-
ity criteria that may be used to reduce the number of
polyhedra examined in the cross section calculation.

2.1.5 Global to Local Coordinate Transfor-
mation. The coordinates of the visible polygons in the
3-D cross section are specified in the 4-D global coordi-
nate system and must be converted to 3-D local coordi-
nates for 3-D to 2-D rendering. The transformation of a
polygon vertex, described in global coordinates by a
4-D vector v, into a polygon vertex described in viewer-
centered coordinates by a 4-D vector u, is given by:

=0 {v~p) (9)

The 4-D vector u is converted into the desired 3-D
vector u’ by simply dropping its last w-coordinate entry.

Tlgep MR A
. s i Tl

ETAST AR T
PR R O Y

T -

Figure 4. Three-dimensional textures using two-dimensional texture-
mapping. See text for discussion.

These 3-D vectors u” are the vertices of triangles which
can be sent directly to a standard 3-D graphics engine
like OpenGL (OpenGL ARB et al., 1997), and which
require no further geometric transformation.

2.1.6 Texture-Mapping. We texture-map the
polygons in the current 3-D cross section of the 4-D
environment to render them visible. Three-dimensional
textures are needed because a polyhedron that serves as
a boundary element in the 4-D environment is a bound-
ary element at each and every one of its potentially visi-
ble points. Accordingly, texture must be defined at each
point in its volume.

We have implemented the texture mapping of 3-D
textures in two ways. The first uses 3-D texture map-
ping defined by SGI'’s 3-D texture-mapping extensions
for OpenGL, on an Onyx2 with InfiniteReality graphics
subsystem. Three-dimensional texture mapping is per-
formed in hardware at high speed on this computer.
The advantage of using true 3-D textures is that a 3-D
texture may vary arbitrarily throughout the entire vol-
ume of a polyhedral boundary element. The disadvan-
tage, however, is that hardware 3-D texture mapping is
not yet a widely available feature.

Our second implementation uses 2-D texture map-
ping, which is a hardware function on inexpensive
graphics cards for personal computers. The idea is to
stack a 2-D image or texture to create a 3-D texture.
(See figure 4.) To each vertex of a boundary element is
associated a vector of 3-D texture coordinates. When
computing the cross section of a particular boundary
element, one also determines the cross section of its

DZmura et al. 621

3-D texture by using the parameters « (equation (5))
for each edge to interpolate between corresponding tex-
ture coordinates. This set of 3-D texture coordinates
must then be projected onto two-space so that 2-D tex-
ture mapping may be performed. In our implementa-
tion, we have chosen to project texture coordinates in
parallel onto the front faces of primitive boundary cle-
ments; these front faces are indicated in figure 1 by
shading. Two versions of the pentahedron and the hexa-
hedron are used: the first projects texture onto a front
triangular face, and the other projects texture onto a
front rectangular face.

2.2 Methods for the Display of nD
Environments forn=4

We turn now to the generalization of our display
methods to #D space in cases in which #» = 4. Observer
position is represented in #2D space by a vector p = [p,
... p,)¥. Observer orientation is represented by an #D
vector q of unit length or by an # X » rotation matrix
Q that rotates a canonical orientation vector q’ into the
current orientation q. The rotation matrix may, again,
be constructed as the composition of elementary rota-
tions in planar subspaces.

The computation of the 3-D cross section involves a
hidden subspace of dimension m = n-3. The hidden
subspace lies orthogonal to the 3-D cross section; it
changes in response to observer motion and is com-
puted using the current rotation matrix, Suppose that
the unit vectors hi, . . ., h, provide a complete or-
thonormal basis for the mD hidden subspace when the
observer is in canonical orientation q'. One can form of
these vectors an # X s matrix H' by placing the m vec-
tors hi, . . ., hj, into the columns of H’. The current
hidden subspace is then produced by applying the cur-
rent rotation matrix Q to H":

H=QH'. (10)

The s columns hy, . . ., h,, of matrix H provide a com-
plete orthonormal basis for the current hidden sub-
space.

The observer’s current position within the hidden

subspace H determines the cross section. This position
is represented by a row-vector g = [, . . . g,,] given by

g=p ‘H. (11)

The 3-D cross section of {(# — 1)-dimensional boundary
elements involves checking each edge of each element
for intersection. Suppose that a point e along the edge is
given parametrically in terms of the edge’s vertices v,
and v,, as in equation (3). For the point e to lie within
the current cross section, its position within the hidden
subspace must be identical to that of the observer:

f-H=g (12)

The value of parameter « for which the cross section
intersects the edge must satisfy the m simultaneous
equations:

a=(g-vi-h)/(vyrby—v-hy),i= 1 oo vy M (18]

If a single value for « satisfies the # equations (13) and
that value lies between 0 and 1, then the cross section
intersects the edge within the confines of the boundary
element.

Once again, the coordinates of the visible polygons in
the 3-D cross section are specified in the #D global co-
ordinate system and must be converted to 3-D local
coordinates for 3-D to 2-D rendering. The transforma-
tion of an #D polygon vertex v into an #D polygon ver-
tex u described in viewer-centered coordinates is given
by:

u=Q'(v—p).

The #D vector u is converted into the desired 3-D vec-

(14)

tor u’ by simply dropping its last #-3 entries.
Texture-mapping an 2D environment generalizes the
4-D case. Suppose that the dimension of the actual tex-
ture to be used in hardware texture mapping is # (typi-
cally 2 or 3 but perhaps a larger number). The #D tex-
ture coordinates that correspond to a boundary
element’s vertices are used to determine texture coordi-
nates for polygons that lie within the current 3-D cross
section. The texture coordinates of the polygons are
given by #D vectors that must be projected onto the
lower-dimensional ¢D space. The simplest class among a

622 PRESENCE VOLUME 9, NUMBER 6

wide variety of possible projections from #D to D space
are the parallel projections, and, of these, the simplest
merely drops the last # - ¢ - I coordinates.

3 Four-Dimensional Environment
Creation and Display

We have developed a computer graphics engine
and a level editor and modeling program, both of which
use the methods described in the previous section for
rendering 4-D environments. The software runs on
PCs, workstations, and graphics supercomputers.

3.1 Computer Graphics Engine

The immediate purpose of the software develop-
ment was to create tools for psychological experiments
on search, navigation, and object recognition in high-
dimensional spaces. We felt that one could learn best to
get around in high-dimensional environments by inter-
acting with them as freely as possible.

Towards this end, we equipped the engine with a
meotion model featuring 4-D collision detection, a
subset-of-C scripting language, and code for multiple
networked users based on TCP/IP. The software uses
OpenGL for 3-D graphics rendering and implements
visual effects such as transparency, lightmaps, fog,
and mirrors. Many inexpensive graphics cards for per-
sonal computers have hardware for single-pass multi-
texturing, and we use this feature in our implementa-
tion to add lightmaps and other secondary textures to
visible surfaces. The engine also includes a threaded,
stack-based machine for interpreting scripts in a sub-
set-of-C scripting language. The scripts are used to
control elevators, platforms, sound effects, blinking
lights, and other interactive elements of the 4-D envi-
ronments. The software also provides for multiple-
user experience using TCP/IP. At the moment, the
visible representation of users is limited to a low-
polyhedron-count, robot-like character that can
adopt standing and flying postures and which pos-
sesses keyframes for walking.

3.1.1 Motion Model. We now detail the inter-
face. The engine takes the Y axis to be oriented verti-
cally along the direction of simulated gravity. The user
can stand, walk, jump, swim, run on, or fly above a 3-D
ground spanned by the X, Z and Waxes. Gravity pulls
the user down the Y axis to the ground when the user
jumps, falls, or sinks. Movement is controlled through
ecither a mouse freelook interface or an interface for a
head-mounted display. The interfaces are similar in that
they let the user control three angles that determine
orientation and direction of motion in 4-D space. The
three angles describe user orientation in the XZ, 77,
and ZW planes, respectively. User orientation in the XZ
plane defines a yaw 6., that corresponds to a rotation

martrix
cosf. O sinf, 0O
0 1 0 0 .
R.= —sinf, 0 cosd. O (15)
0 0 0 1

User orientation in the ZW plane defines a zaw 6, that
corresponds to a rotation matrix

1 0 0 0
0 1 0 0

R = 0 0 cos@, sind, (16)
0 0 —sinb, coséb,,

These two matrices together determine a matrix R, =
R,.. R, that specifies the user’s heading within the
XZW subspace. The orientaton of the viewpoint is fur-
ther modulated by a pitch 6,, that corresponds to a ro-
tation matrix

1 0 0 0

| 0 cosb, sin6, O
R:=1 0 —sin 6, cosb, 0 (17)

0 0 0 1

The rotation matrix Q that defines the current orienta-
tion (equation (1)) is defined to be the product

Q=R;R, =R..R;R,. (18)

The roll of the observer in the YZ plane is not accessible
directly through the interface: except in special cases,
the user is always upright.

D'Zmura et al. 623

Figure 5 illustrates rotation in the ZW plane. The ini-
tial orientation of the observer is such that a hyper-
sphere (center) and a double doer (right) are visible
(panel A). By changing orientation, the hypersphere and
the door are made to disappear (frames B through D),
and a new door is made to appear (frame H). Such a
change in orientation is experienced as a smooth and
controllable turning by a user of the engine software.

3.1.2 Freelook Interface. Using a mouse with
three buttons, the freelook interface is implemented as
follows. The left mouse button moves the user forward
along the current heading, and the right mouse button
moves the user backward. Motion of the mouse up-
wards and downwards (viz. away from and towards the
user, respectively) controls pitch. Sideways motions of
the mouse control either the vaw in the XZ plane (if the
middle mouse button is not held down) or the zaw in
the ZW plane (if the middle mouse button is held
down). In particular, if the middle mouse button is not
held down, then movement of the mouse to the left
turns the user to the left, and movement to the right
turns the user to the right. Likewise, when the middle
button is held down, movement of the mouse to the left
turns the user to the #im and movement to the right
turns the user to the &or. (The terms nim and bor refer
to zaws of negative and positive value, respectively, and
are analogous to left and right.) Although it is possible
to move and turn simultaneously with this interface, it
does have a drawback: one cannot change yaw and zaw
simultaneously.

3.1.3 Position-Tracking, PINCH Glove, and
Head-Mounted Display Interface. We have imple-
mented a similar interface for use with a head-mounted
display (HMD). In our implementation, an Onyx2
workstation is used to drive an n-Vision HiRes HMD.
Atop this HMD is an InterSense tracking cube with ac-
celerometers that report 3-D orientation. A user wear-
ing the HMD also wears Fakespace PINCH Gloves.
Pinching the right index or the right ring finger and
thumb moves the user forwards and backwards, respec-
tively. The elevation of the head controls pitch. Turning
the head left and right causes the viewpoint to turn left

and right, if the right middle finger is not pinching the
right thumb. If the right middle finger is pinching the
thumb, turning the head left and right causes the view-
point to turn #im and bor.

3.1.4 Collision Detection. Motion is con-
strained by the simulated solidity of floors, walls, ceil-
ings, and objects in the environment. Attempted mo-
tion through such solids by the user is detected by an
algorithm that checks whether the attempted motion
would place a model representing the user partly or
wholly within some foreign solid object. Although gen-
eral collision detection in four dimensions can involve
rather complicated algorithms (Latombe, 1991; Lin &
Gottschalk, 1998), a simple ray-casting technique can
handle tasks such as determining the height of the view-
point position above the ground. From the position of
the viewpoint, one casts a ray represented by a unit-
length vector that passes through one or more bound-
ary elements. The aims are to determine which of these
boundary elements is closest, the point of intersection,
and the distance of the point of intersection from the
viewpoint.

Referring to figure 6, a point within the subspace
spanned by a boundary element has the form

o T €8 + €6, + €3€3 (12

where the parameters €;, €,, and €; describe location
within the subspace based on corner position ¢, and
spanned by edges ey, e,, and e;. If the ray d cast from
viewpoint position p intersects that subspace, then the
following equality holds for some value of the distance
parameter &:

P+5d=Cﬂ+E1€1+Ezez+fge3. (20)

Forming the matrix C with columns e,, e, €5, and -d,
respectively, one finds the parameters that describe the
intersection as follows, when the matrix is invertible:

CHp—c) =[€ &€ 3]". (21)

Inequalities on. the edge parameters inform one
whether the intersection lies within the confines of the
boundary element; these inequalities depend on the

624 PRESENCE: VOLUME 9, NUMBER 6

Figure 5. A rotation in the ZVWV plane. The effects of chonging zaw on view orientation are visible in these eight sequential fromes labeled A
through H. See text for discussion.

DZmura et al. 625

Figure 6. Simple ray-casting for collision detection. See text for
discussion,

geometric primitive chosen (figure 1). One searches
through all possible boundary elements for the one that
produces the smallest distance 8. The generalization to
higher dimensions is immediate.

3.2 Level Editing and Modeling

The editor provides a graphical user interface for
4-D model creation and level editing. Its features in-
clude a hierarchical object database; the simultaneous
provision of both 2-D orthographic cross sections and
fully-rendered 3-D views; an intuitive and flexible inter-
face for texture-mapping; a full set of primitive objects;
a hole editor; an extrusion editor; facilities for tessela-
tion, tetrahedronization, and vertex editing; and multi-
processing support for cross section computation using
POSIX threads.

Figure 7 shows a screen shot of the editor. The edi-
tor’s primary window has four panels, each of which can
be configured to provide a 2-D wireframe orthographic
cross section (as at top left) or a 3-D perspective view
(as art top right and bottom right). Any one of these
panels can be toggled to provide a full-screen window.
The 2-D orthographic cross sections can be provided in
cither the global coordinate system or in a coordinate
system local to a selected object. In the latter case, only
the selected object is depicted.

Designers can interact with the 3-D view in two ways.
The first is through the interface described in section
3.1.1, and the second provides further degrees of free-
dom in viewpoint position and orientation. In particu-

lar, the designer can rotate his or her viewpoint in each
of the six basic planes XY, XZ, XW, YZ, YW, and ZW.
Elementary rotations in these planes are composed in
the order just listed. We find that the provision of these
extra degrees of freedom (such as roll) is very useful
when modeling complex objects.

Primitive objects include the hypertetrahedron, the
triangular hyperprism, the hypercube, multipolyhedral
approximations to both the hypercylinder and the hy-
persphere, as well as single polyhedra (figure 1). The
resolutions of the multipolyhedral approximations to
the hypersphere and hypercylinder are under the de-
signer’s control.

A hierarchy is used to control the inheritance of trans-
formations among objects. The window that is used to
control object hierarchy is shown at the top middle of
figure 7. Primitive objects constitute the leaves of such a
hierarchy. Grouping operations let one define complex,
parent objects formed of child objects and primitives.
The designer can also use the hierarchy editor to select
which objects are to be displayed at any one time; hid-
ing unnecessary objects can significantly speed up the
display of large, complex ¢environments.

The designer performs geometric transformations of
objects using either a click-and-drag interface or a nu-
merical transformation editor (pictured at the bottom
center of figure 7). Transformations include transla-
tions, scalings, and rotations about arbitrary central
points. Snap-to-grid functionality is provided with the
click-and-drag interface. The numerical transformation
editor lets one transform objects using either global co-
ordinates or coordinates local to the current viewpoint.

The designer uses a hole editor to create doors, win-
dows, and the like. Figure 8 shows a rectangular solid
hole in an octahedral boundary element. The hole edi-
tor tessellates the original boundary element and its tex-
ture to accommodate the hole. This tessellation proce-
dure uses the original boundary element to determine
new boundary elements that occupy the original vol-
ume, minus the hole. In level construction, one often
defines a solid wall to have both an inner face and an
outer face. To create a hole thar passes through such a
wall, one creates corresponding holes in boundary ele-

626 PRESENCE: VOLUME 9, NUMBER 6

.- __m ’:g’
b= é".:g')
Ji=iE

==

DZmura et al. 627

Hole

Boundary

Element
Figure 8. Rectangular solid hole within an octohedral boundary
element. See text for discussion,

ments of both the inner and outer faces and joins the
corresponding vertices of the holes appropriately.

The texture-mapping interface includes a texture pal-
ette for selection and a texture coordinate editor for
positioning. The application of 2-D textures to 3-D
boundary elements by the editor involves the selection
of a privileged face. (See figure 1.) When the cross sec-
tion of the boundary element is parallel to the privileged
face, the 2-D texture is seen in the standard fashion.
When the cross section is not parallel to the privileged
face, then the 2-D texture is distorted by the projection
indicated in figure 4. When 3-D texture maps are used,
such distortions are not an issue. It is thus important for
the designer of a 4-D environment that is texture-
mapped using 2-D textures to choose one or more priv-
ileged subspaces in which texture mapping does not
appear distorted.

The designer specifies the normal directions of the
primitives, and this information is needed to perform
back-volume culling (section 2.1.4).

For level design, the type of boundary element must
be specified. These types include floor, wall, ceiling, wa-
ter, and so on. Type information is needed for the en-
gine to function properly. To help the designer with
this process, the editor color-codes the boundary ele-
ments according to type. Further information required
by the engine includes pointers from particular objects
to scripts and the specification of object kinematic prop-
erties, which are specified through the hierarchy editor.

To date, our experience in designing 4-D environ-
ments with the editor underlines the importance of
thinking in one more dimension than usual. For in-
stance, one might start designing an environment by
specifying a floor plan. However, a standard floor plan
with markings in a plane area does not help with 4-D
design. Four-dimensional floors are volumetric, and a
proper floor plan consists of markings within a volume.

Figure 9 shows how three floor plans drawn in the
XZ, ZW, and XW planes may be combined to provide a
volumetric floor plan in four dimensions. Each of the
2-D floor plans indicates the positions of four waist-
high control panels that surround a central hypersphere.
When combined, these provide a total of six control
panels (two along cach of the X, Z, and Waxes) that
surround the central hypersphere.

Figure 10 shows a 3-D cross section of a spaceship
helm, created using the editor and viewed by the en-
gine. Four waist-high control panels are seen to sur-
round a hypersphere with starfield texture mapping.
A 2-D floor plan of this cross section would indicate
the four control panels and the hypersphere. As suggested
by figure 9, there are two further control panels that sur-
round the hypersphere, and these are aligned along the
axis orthogonal to the cross section viewed in figure 10. A

Figure 7. Window layout of the level editor and modeling program. The top left panel shows a 2-D floor plan of part of a 4-D environment
that includes a teleport chomber, which is rendered in 3-D from user-controlled viewpoints in the top right and bottorn right panels. The two
3-D views at right reveal different aspects of the 4-D scene; note that the teleports at top include two that are blue-green, and those at
bottom are all blue-red. Also visible are the model hierarchy editor (top center), the material editor (bottom left). texture palette (middie left),

and numerical transformation editor (bottom middle).

Figure 10. Ship’'s helm with hyperspherical storfield display viewed with the engine. Screenshot taken from an [BM-compatible personal
computer with an nVidia Riva TNT 3-D graphics card. A low-polyhedron-count, 4-D character is visible at left. Hyper software may be

downloaded from www.cvr.uciedufdzmura.

628 PRESENCE VOLUME 9, NUMBER &

V4

X—

7/
w

Figure 9. Two-dimensional floor plans in the XZ, ZW, and XW planes (above) and their joint representation as ¢ volumetnic floor plan
(below). Six “control panels” (labeled | through &) surround a central hypersphere S. Figure 10 shows a rendered view. See text for discussion.

volumetric floor plan can capture this information and is
useful when designing 4-D levels.

4 Conclusions

We have presented methods for displaying envi-
ronments with four or more spatial dimensions. We
have also described software that uses these methods
to create high-dimensional environments and to dis-
play them. The computations involved can be con-
ducted rapidly enough on a present-day IBM-com-
patible personal computer for a user to interact in real
time with fully textured high-dimensional environ-
ments.

Rather than working with equations and various para-
metric forms of manifolds to be rendered, we have cho-
sen to represent boundaries using a set of geometric
primitives. This is the sort of representation that has
proven so successful in 3-I computer graphics. The
primary drawback of this choice is that such a represen-
tation can provide only an approximation to curved
boundaries. Of course, with increasingly small and in-
creasingly numerous polyhedra, one can create an arbi-
trarily good approximation to any curved boundary in
four dimensions. Yet increasing the number of polyhe-
dra to be rendered reduces the rate at which frames can
be rendered.

We find that a room like the helm (figure 10), which
has just over 1,600 boundary elements, can be rendered

629

DZmura et al.

by the engine in 32-bit color at nearly thirty frames per
second at a spatial resolution of 1024 X 768 using a
personal computer with an Intel Celeron 500 MHz
CPU and an nVidia Ultra TNT2 3-D graphics card. All
of the geometric calculations are conducted by the
CPU. As depicted in figure 2, the geometric primitives
are subject to a frame-by-frame calculation that deter-
mines their cross section with a particular 3-D subspace.
Triangles in the cross section and their texture coordi-
nates are then sent to the OpenGL (or other) graphics
pipeline. As noted in Appendix A, the homogeneous
transformations that are needed in geometric calcula-
tions pertaining to 4-D environments are represented by
5-D matrices. Acceleration of 5-D matrix operations has
the potential to speed the geometric calculations enor-
mously.

The use of the software goes beyond the research in
human perception and navigation for which it was origi-
nally designed. Beyond potential applications in educa-
tion and entertainment, the software can be used to vi-
sualize events in spacetime. Three-dimensional solid
objects that change and interact as a function of time
can be extruded appropriately to create hyperobjects in
four spatial dimensions. With our methods, the events
can then be viewed from an arbitrary position and ori-
entation in spacetime in an interactive and immersive
fashion. One need no longer be confined to watching a
“movie” of a sequence of events in which the time axis
is the hidden axis. Rather, one can view events from
arbitrary perspectives in spacetime.

Fascination with the fourth dimension dates to the
nineteenth century and has given rise to many popular
accounts of dimensionality over the years, some of them
more mathematical in nature (Hilbert & Cohn-Vossen,
1952) and some of them less so (Hinton, 1904; Abbort,
1952; Manning, 1960; Rucker, 1984). A recurring
theme is the question of how beings of low dimension
interact with beings and objects in higher dimensions.
For instance, Abbott’s Flatland (1952) concerns itself
with the interaction of two- and three-dimensional be-
ings.

With our rendering method, it occurs that if the ob-
server of the high-dimensional environment does not
know how to engage the interface to the higher dimen-

sion(s), then the observer will experience the geometry
of a normal 3-D environment. By analogy, may it per-
haps be the case that we already live our lives in an envi-
ronment with four or more noncompactified spatial di-
mensions, but simply do not know how to work the
interface?

High-dimensional environments differ from our own
in the way that lights and sounds would work. For in-
stance, a point source of light in four dimensions pre-
sumably radiates in all directions and so causes visible
lights and shadows within a 3-D subspace. To a creature
within the 3-D subspace, these lights and shadows
would almost never have a visible cause. Likewise, one
should be able to hear 4-D events, even if they lie out-
side the visible subspace. We have witnessed no such
effects in our daily experience.

Much of the promise of virtual reality lies in the abil-
ity to experience environments that could not possibly
exist. The categories of perception identified by Kant
(1791) include space, time, and causality—all of which
are leading candidates for virtual tampering. With the
present 4-D environments, we have made significant
headway on the category space. We look forward to fu-
ture environments that also violate time and causality in
consistent and useful ways.

Acknowledgments

We thank Scott Richman for his helpful comments and Barb
Krug for her digital artwork. This work was supported by
NIH EY10014, NSF DB9724595, and a fellowship to Colan-
toni from the Région Rhéne-Alpes, France.

References

Abbott, E. A. (1952). Flarland. New York: Dover.

Banchoff, T. F. (1990). Bevond the Third Dimension: Geome-
trv, Computer Graphics, and Higher Dimensions. New York:
Scientific American Library.

Feiner, S., & Beshers, C. (1990). Visualizing n-dimensional vir-
tual worlds with n-vision. Computer Graphics, 242), 3-38.

Hanson, A. ., & Heng, P. A. (1992). Illuminating the fourth

630 PRESENCE: VOLUME 9, NUMBER 6

dimension. IEEE Computer Graphics and Applications
(July), 54-62.

Hanson, A. J., Munzner, T., & Francis, G. (1994). Interactive
methods for visualizable geometry. IEEE Computer, 27(7),
73-83.

Hilbert, D., & Cohn-Vossen, S. (1952). Geometry and the
smagination. (P. Nemenyi, Trans.). New York: Chelsea.
Hinton, C. H. (1904). The fourth dimension. London: Swann

Sonnenschein.

Hollasch, S. (1991). Four-space visualization of 4-D objects.
Unpublished master’s thesis, Arizona State University.

Kant, I. (1791/1956). Kritik der veinen vernunft. Hamburg:
Felix Meiner.

Latombe, J.-C. (1991). Robot motion planning. Boston: Klu-
WeEr.

Lin, M., & Gottschalk, S. (1998). Collision detection between
geometric models: a survey. Proceedings of IMA Conference
on Mathematics of Surfices, http: //citeseer.nj.nec.com/
Lin98collision.html.

Manning, H. P., (Ed.). (1960). The fourth dimension simply
explained. New York: Dover.

Noll, M. A. (1967}. A computer technique for display n-di-
mensional hyperobjects. Communications of the ACM,
10(8), 469-473.

OpenGL ARB, Woo, M., Neider, J., & Davis, T. (1997).
OpenGL programming guide (2nd ed.) Reading, MA: Addi-
son-Wesley.

Rucker, R. (1984). The fourth dimension: Toward a geometry of
higher reality. Boston: Houghron-Mifflin.

Seyranian, G. D., Krug, B., Richman, S., & D"Zmura, M.
(1999). Search and navigation in four-dimensional environ-
ments. Investigative Ophthalmology and Visual Science,
44), S801.

Steiner, K. V., & Burton, R. P. (1987). Hidden volumes: The
4th dimension. Compurer Graphics Worid (February), 71—
74.

Appendix A: Mathematical Preliminaries

We use vectors and matrices to represent posi-
tions, orientations, and transformations in the virtual
environments. Unit vectors along four mutually perpen-
dicular axes provide a complete orthonormal basis for
4-D space. A 4-D column vector v has entries that spec-
ify its positions along the axes:

(Al)

v=[vyv,v; \’4]T p

(in which the superscript T denotes transpose).

Operations such as dot product and the determina-
tion of length work in the expected manner. To illus-
trate the dot product, suppose that unit vectors x, y, z
and w along the X, Y, Z, and W axes, respectively, pro-
vide an orthonormal basis. One can then use the dot
product to find the x coordinate v, of vector v in that
basis:

Ve, T VX=V|X) T VX + vz X+ vy,

(A2)

The v, z, and w coordinates are found in a similar fash-

101

v, = v'y,v,=vrzandv, =V 'w.
Calculating the length |v| of vector v generalizes in a
simple way the calculation in three dimensions:

Iv] = (v vy + v, v, + v, v, + v, v,)12

= (v- V)22, (A3)

Finally, one can find the angle @ between two vectors v
and w as follows:

g =

cos™ ((v-w)/(Ivl [w])) . (A4)

Two vectors v and w are perpendicular to each other if
their dot product has value zero:

v-w=0. (A5B)
In the case of a zero-valued dot product, the angle 8
between the two vectors is 90 degrees or 7/2 radians,
because cos1(0) = m/2.

The normal n to a set of three vectors vy, v, and v,
in which no one of the three may be expressed as a lin-
ear combination of the other two, can be expressed us-
ing the dot product:

vi-n=0,v;:n=0,v;'n=0. (AG)

A nonzero normal vector that satisfies these equations
may be found by calculating the determinant of a 4 X 4
matrix with v;, v,, and v, and the unknown n as its
rows. The n so determined may be normalized to have

DZmura et al. 831

unit length, and this unit-length normal vector is
unique up to sign.

A translation or shift of position in 4-D space can be
specified by a 4-D vector t which is added to a vector a
to provide a transformed vector b:

b=a+t (A7)

Scaling in 4-D space can be specified by a 4 X 4 diago-
nal matrix § with entries along the diagonal that specify
the scale factor along the corresponding axis:

b=Sa. (A8)

One can represent a rotation in 4-D space by a4 X 4
orthogonal matrix; such a matrix R satisfies the equa-
tion R RT = I. We take such rotations to act on the left
of a vector a to provide a rotated vector b:

b=Ra. (A9)

The simplest rotations in 4-D space are those that occur
within a single plane or 2-D subspace. For instance, ro-
tating the XY plane by angle 6 about the Zand W axes
can be represented by a matrix R, with form:

cos® —sinf 0 0O
sinf cosf 0O 0O
0 0 01

Similar matrices embed two-dimensional rotations
within planes spanned by any two of the basis axes in
4-D space; choosing any two of the four possible axes
provides six possible 2-D rotations.

Transformations in four-space can be represented us-
ing homogeneous transformations in five-space. Sup-
pose that one has a vector a that, when subject to a
transformation represented by a 4 X 4 matrix M acting
on the left and then translated by vector t, provides a
vector b:

b=Ma+t. (Al1)

One can embed this transformation in five-space using
vector [a, a, a, a 1]" and a 5 X 5 matrix which is
formed by placing the matrix M in the first four rows
and columns, placing the vector t in the first four entries
of the fifth column, and placing the vector [0 0 0 0 1]
in the last row. Multiplying the two produces a 5-D
vector with the form [b, b, b, b,, 1]".

