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Abstract
Objective. Recent studies have shown that auditory cortex better encodes the envelope of
attended speech than that of unattended speech during multi-speaker (‘cocktail party’) situations.
We investigated whether these differences were sufficiently robust within single-trial
electroencephalographic (EEG) data to accurately determine where subjects attended.
Additionally, we compared this measure to other established EEG markers of attention.
Approach. High-resolution EEG was recorded while subjects engaged in a two-speaker ‘cocktail
party’ task. Cortical responses to speech envelopes were extracted by cross-correlating the
envelopes with each EEG channel. We also measured steady-state responses (elicited via high-
frequency amplitude modulation of the speech) and alpha-band power, both of which have been
sensitive to attention in previous studies. Using linear classifiers, we then examined how well
each of these features could be used to predict the subjects’ side of attention at various epoch
lengths. Main results. We found that the attended speaker could be determined reliably from the
envelope responses calculated from short periods of EEG, with accuracy improving as a function
of sample length. Furthermore, envelope responses were far better indicators of attention than
changes in either alpha power or steady-state responses. Significance. These results suggest that
envelope-related signals recorded in EEG data can be used to form robust auditory BCI’s that do
not require artificial manipulation (e.g., amplitude modulation) of stimuli to function.

Keywords: selective attention, speech envelopes, brain–computer interfaces, alpha lateralization,
steady-state responses

(Some figures may appear in colour only in the online journal)

1. Introduction

A great deal of effort has been devoted to mapping out the
relationship between the acoustic properties of speech utter-
ances and their associated neural responses. The feature of
speech with the strongest representation in the cortex appears
to be its temporal envelope. Researchers have found strong
correlations between auditory cortical activity and speech
envelopes [1–3] which appear to be produced by the syn-
chronization (or ‘phase-locking’) of endogenous oscillations
to the slow (<10 Hz) amplitude modulations present in the
envelope [4, 5]. This phase-locking was originally thought to

reflect a strictly feed-forward process, but recent studies have
found that it is also subject to top-down factors. For example,
phase-locking is diminished when speech is unintelligible
[6, 7], and is strengthened when the speaker’s face is visible
[8]. Additionally, in situations with multiple competing talk-
ers, such as the classic ‘cocktail party’ task [9], the auditory
system preferentially phase-locks to the envelope of the
attended speech [10, 11], and tends to remain out of phase
with the envelope of competing speech [12].

If these differences between the cortical responses to the
envelopes of attended and unattended speech are visible in
single-trial electroencephalographic (EEG) data, they could
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form the basis for a novel brain–computer interface (BCI).
BCIs vary widely in their implementation, but the common
goal is to use brain-generated signals to communicate with
others or to control a computer interface [13]. Some BCIs
allow users to signal intent by modulating some aspect of
their brain activity, such as motor rhythms [14], but these
often require considerable training. Other BCIs instead have
subjects make choices by attending to one of several com-
peting visual and/or auditory stimuli. By presenting each
stimulus at a different time [15] or frequency [16, 17], evoked
responses to each can be extracted and compared for signs of
attention. While this method can allow for complex inter-
faces, such as a full BCI-controlled keyboard [15], it is con-
strained by the need for precisely-controlled artificial (e.g.,
flickered or modulated) stimuli. In contrast, an envelope-
based attention BCI could operate on the amplitude mod-
ulations already present in complex naturalistic stimuli such
as speech.

As a precursor to developing an envelope-based BCI, we
determined in the present study whether the differences in
neural responses to the envelopes of attended and unattended
speech could be reliably observed in single-trial EEG data.
Adult subjects performed a task in which they attended to one
of two competing speakers while high-density EEG data were
recorded. We extracted cortical responses to the envelopes of
both speakers using cross-correlation, and then assessed our
ability to decode each subject’s side of attention as a function
the duration of EEG data used to extract the responses. We
found that envelope responses were sufficiently represented in
EEG to decode side of attention from brief segments of data,
with accuracy improving as data segment duration increased.

Furthermore, we wanted to compare classification per-
formance using these envelope responses to classification
performance using indicators of attention that have appeared
in previous BCI studies. First, since the speakers were in
different locations, we expected to see signs of attention in the
EEG data’s spectral content. The deployment of attention to
the left or right side of space is associated with hemispheric

lateralization of oscillatory power in several frequency bands
[18–20]—particularly in the alpha band (8–12 Hz). In some
studies, alpha power lateralization can be sufficiently robust
to discriminate a subject’s side of attention without further
need to consider any stimulus-related brain activity [20, 21].
Second, some BCIs decode attention from changes in audi-
tory steady-state responses (ASSRs) [17], as attention has
been shown to boost ASSR magnitudes [22]. Thus, we
amplitude modulated the left and right speech streams at 40
and 41 Hz in order to induce ASSRs in the EEG data. We
found that classification accuracy using envelope responses
greatly outperformed classification using either alpha later-
alization or ASSR magnitude, further reinforcing the potential
for envelope-based BCIs.

2. Methods

The data were also used in a previous study that examined
how cortical entrainment to speech envelopes is involved in
selectively attending to one of multiple speakers [12]. The
current study shared some of its data pre-processing steps, but
otherwise had distinct goals and analyses.

2.1. Participants

All experimental procedures were approved by the Institu-
tional Review Board of the University of California, Irvine.
Ten young adults (two female) between the ages of 21 and 29
volunteered to participate in the study, although one had to be
excluded due to excessive EEG artifacts. All reported having
normal hearing and no history of neurological disorder.
Written informed consent was obtained from each subject
prior to participation in the study.

2.2. Task and stimuli

Each participant sat in a sound-attenuated testing chamber
facing a computer monitor flanked on either side by a
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Figure 1. Layout and stimuli. Left: layout of the equipment during the task. Right: example of speech waveforms and envelopes from the first
few seconds of a trial.
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loudspeaker (figure 1). Before each trial, the subject was
presented with a visual cue to attend to either the left or right
speaker (chosen at random) while maintaining visual fixation
on a cross in the center of the monitor. During the trial, the
left and right speakers played independent speech stimuli
consisting of a series of spoken sentences taken from the
TIMIT speech corpus [23]. To construct these speech stimuli,
sentences were drawn from the corpus at random and con-
catenated until the total length of each channel exceeded 22 s,
with silent gaps longer than 300 ms being reduced to 300 ms.
No sentence was reused within experimental sessions. After
constructing the stimuli, the left and right channels were
sinusoidally amplitude-modulated at 40 and 41 Hz, respec-
tively, in order to induce ASSRs. These modulation fre-
quencies induce robust ASSRs [24, 25] and do not interfere
with the intelligibility of the speech [26–28]. Envelopes for
the speech were obtained by calculating the Hilbert transform
of the stimuli, and then filtering the magnitude of the result
with a passband of 2–30 Hz.

At the end of each trial, subjects were shown the tran-
script of a sentence they had heard during that trial. They
were then required to indicate via a button press whether the
sentence was played on the attended side. In practice, this task
was very difficult unless subjects ignored the unattended side
completely, as the memory load required to maintain both
sides was prohibitive. Subjects were allowed to practice the
task until their performance exceeded 80%, and were required
to maintain that level throughout the experiment. Subjects
completed 320 trials each (8 blocks, 40 trials per block),
spread over 1–2 weeks, with the exception of one subject who
only completed 240 trials due to equipment failure.

2.3. EEG recording and pre-processing

During the task, we recorded 128 channels of EEG using
electrode caps, amplifiers, and software produced by
Advanced Neuro Technology. Electrodes were placed fol-
lowing the international 10/5 system [29], and all channel
impedances were kept below 10 kΩ. The EEG data were
sampled at 1024 Hz with an online average reference. After
the experiment, EEG data were exported into MATLAB
(MathWorks, Natick, MA) for all further processing and
analyses.

Each channel of EEG was filtered with a pass band of
1–50 Hz using a third order Butterworth filter. Filtering was
conducted both forwards and then in reverse to eliminate
phase shifts. The filtered data were then down-sampled to
256 Hz and segmented into individual trials which were 20 s
long, beginning one second after the onset of the sentences.
The delay between sentence onset and analysis window onset
was necessary because neural onset responses are known to
be large relative to envelope-related activity [1, 2]. Further-
more, since the left and right speech began simultaneously,
they might have very briefly had correlated envelopes, which
could impair later analyses. The segmented trials were
visually inspected to exclude those with excessive artifacts
(mean 16.6 trials per subject). The remaining data were then
entered into the Infomax Independent Component Analysis

algorithm available as part of the EEGLAB toolbox [30].
Components corresponding to artifacts such as eye move-
ments and muscle activity were removed [31], and all
remaining components were projected back into channel
space for subsequent analyses.

2.4. EEG feature extraction

We extracted three different features of interest from the EEG
data. First, we obtained envelope responses by calculating the
cross-correlation functions [32] between each stimulus’s
envelope and the EEG channels. Cross-correlation measures
the similarity of two time-series as a function of lag between
them, and has been used previously to quantify neural
responses to speech envelopes [1, 2, 12]. For two time-series
X and Y of length N, the cross-correlation between X and Y at
lag τ is defined as:
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in which X̄ and Ȳ are the means and σX and σY are the
standard deviations of X and Y. The second feature we
extracted from each channel was a measure of power in the
alpha band, calculated by performing the discrete Fourier
transform on each trial and then summing power across all of
the frequency bins between 8 and 12 Hz. The final feature we
extracted from each channel was a measure of the ASSRs,
calculated by again Fourier transforming each trial, but
selecting just the frequency bins corresponding to the left
(40 Hz) and right (41 Hz) modulators.

2.5. Within-subject classification

With the extracted EEG features, we attempted to build linear
models that could predict to which speaker a subject attended
on each trial. A graphical representation of this classification
process appears in figure 2. First, all the trials for a given
subject were randomly assigned to either a training set or a
testing set, consisting of 75% and 25% of the total trials,
respectively. Next, using just the training data, we attempted
to find the most informative EEG channels for each feature.
For the envelope cross-correlation feature, we computed the
average cross-correlation functions for all attended stimuli in
the training set, as well as the average cross-correlation
functions for the unattended stimuli. The channels that were
selected were the 15 which showed the greatest difference
between their attended and unattended responses, as seen in
figure 3. Using 15 channels was chosen as a balance between
minimizing the complexity of the classifier while maximizing
the information available to the classifier, as 15 channels
could generally cover the peak responses. For the cross-cor-
relation feature, we also performed the additional step of
choosing the latencies at which the cross-correlation values
should be entered into the classifier. We used the latencies
corresponding to the three large peaks in the average attended
minus unattended cross-correlation functions (see figure 3).

A similar process was used to find the most informative
channels for the remaining two EEG features. For alpha
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power, we identified the most informative channels by sub-
tracting the mean alpha power in each channel during ‘attend
left’ trials in the training set from the mean of ‘attend right’
trials, and then selected those 15 channels where the differ-
ences were greatest (figure 4, left). For the ASSR feature, we
used the 15 channels where the ASSR response magnitudes
were greatest in the training data, averaged across the two
modulation frequencies (figure 4, right).

Once we had determined which channels would be used
for each feature, we proceeded to the classification step.
Classification was performed using the linear discriminant
classifier function built into MATLAB (classify.m). This
classifier uses the training data to build an optimal hyperplane
that separates the two conditions (‘Attend left’ and ‘Attend
right’). Once built, the hyperplane is used to predict the
condition of each trial in the testing data. A separate classifier
was built for each EEG feature of interest. For the cross-
correlation feature, a total of 90 envelope-EEG cross-corre-
lation values were entered into the classifier for each trial (15
channels, 3 latencies, 2 envelopes). For the alpha-power
feature, the classifier received 16 values per trial: the alpha
power at each of the 15 selected channels, as well as the
difference of the average alpha power in the selected channels

over the left hemisphere to those over the right hemisphere.
This latter value was intended to better capture lateralization
in alpha power in case the overall alpha power varied greatly
across trials. Finally, for the ASSR feature the classifier
received 30 values per trial (ASSR power at 15 channels, 2
frequencies).

The accuracy of each classifier was determined by
comparing the classifier’s prediction of the condition (‘Attend
left’ versus ‘Attend right’) of each testing set trial to its true
condition. That accuracy value (percent correct) comprised a
single estimate of the classifier’s performance. We then
repeated the entire classification process starting from a new
random split of training and test trials each time, until we had
500 such estimates, forming a distribution of classification
accuracy values (see figure 2). Note that by using different
training sets of data for each round of classification, different
channels could potentially be chosen as the most informative
for each iteration. However, in practice the most informative
channels (and latencies for cross-correlations) were highly
consistent across each iteration. From the distribution of 500
classification accuracy values, we used the mean to gauge the
overall performance of the classifier. Classification accuracy
was stated to be significantly above chance (one-way, α = .05)
if the 5th percentile of those accuracy estimates excee-
ded 50%.

In order to evaluate the relationship between the EEG
epoch length and classification performance, we repeated the
classification process for epoch lengths of 2, 3, 4, 5, 10, and
40 s. For epoch lengths shorter than 20 s (the length of trials
in the original dataset), we divided each trial into multiple
shorter epochs (i.e. one 20 s trial cut into five 4 s epochs).
Each of the EEG measures (envelope-cross correlations, alpha
power, and ASSRs) was then calculated on these new shorter
epochs. For the epoch length of 40 s, we concatenated the
EEG of two trials from the same condition. In order to
account for multiple comparisons at the six different epoch
lengths, we implemented a Bonferroni correction which
changed the threshold for significance for any given epoch
length to be set at the 5/6 percentile of the distribution instead
of the 5th.

2.6. Cross-subject classification

While the classification process described above gives us an
idea of how well a subject’s direction of attention can be
predicted after training a classifier to their own data, it would
be beneficial to know how well their direction of attention
could be predicted without tailoring the classifier to their
individual data. Thus, we performed a second round of
classification in which the classifiers were not trained on the
individual subject’s data. Instead, for each subject we used
their entire data set for testing, and used all other subjects’
data for training. Thus, the channels selected (and latencies
for cross-correlations) would be those most informative
across all other subjects.

In order to build a distribution of accuracy values similar
to those of the individualized classifiers, we used a bootstrap
sampling technique to determine which data epochs would be
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Figure 2. Within-subject classification process. A graphical repre-
sentation of the within-subject classification process. For a given
subject, epoch duration, and EEG feature (cross-correlations, alpha
power, or ASSRs), epochs are randomized into training and test sets.
A linear discriminant is formed using the training data, and is then
used to predict the side of attention for each epoch in the test set. The
process is repeated 500 times, with new random splits of training and
test epochs. The accuracies of all iterations form a distribution (upper
right). The mean of the distribution (red dashed line) is reported as
the overall classification performance, and the accuracy is stated to
be significantly above chance if the 5/6 percentile of the distribution
(black dashed line) is above 50%.
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they are most distinct. Red lines indicate individual channels. Within the 15 channels with the largest magnitude differences between the
attended and unattended cross-correlation functions, we find the three largest peaks in the difference function. Data shown for one
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Figure 4. Alpha lateralization and ASSRs. Left: a topographic plot for a representative subject showing the difference in alpha (8–12 Hz)
power between all ‘Attend left’ trials and ‘Attend right’ trials in the training set. A lateralization in alpha power is visible, with maximal
differences measured in parietal electrodes. Right: the average ASSRs for a representative subject. Magnitude is indicated by the length of the
line extending from each electrode, while the phase is indicated by the angle. ASSR topography was typical for EEG studies, with peaks in
magnitude over frontal and occipital electrodes.
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used to train the classifier. This process entailed taking a
sample of epochs with replacement from the training data of
size N, where N was the total number of epochs in the training
set. We then used that data to train a classifier that predicted
the condition of epochs in the test subject’s data. This process
was repeated 500 times, with new samples of training data
taken each iteration. As before, the accuracy values of the
predictions formed a distribution which we treated similarly
to the distributions described above.

3. Results

3.1. Behavior

Participants were able to exceed the required performance on
the behavioral task throughout all experimental sessions
(mean 82.45% correct). They reported the task as being
challenging due to the effort required to maintain all of the
novel sentences from the attended side in working memory.

3.2. EEG feature extraction

Using the training data for each subject, we calculated
envelope cross-correlation functions that mirrored those
observed in other studies [1–3, 12]. As seen in figure 5 (top),
the channels where the attended and unattended cross-corre-
lation functions were most distinct were located over frontal
and temporal sites, which we have previously identified as
consistent with sources in both early and later auditory areas
[12]. Most subjects showed three distinct peaks in the dif-
ference function between the attended and unattended cross-
correlations. The latencies of those peaks (around 90, 200,
and 340 ms) corresponded to the latencies of well-known
auditory evoked responses [33], and were highly similar
across subjects.

Alpha power in each subject’s training data showed the
expected pattern of hemispheric lateralization differences
between ‘Attend left’ and ‘Attend right’ trials, although those
differences were generally weak. The channels selected for
classification in each subject were typically located over
parietal cortex, which is typical for auditory spatial attention
tasks [20], but also included some neighboring occipital and
temporal electrodes. Topographic plots showing which
channels were selected for alpha power measures appear in
figure 5 (middle).

Robust ASSRs were present in each subject’s training
data, but these ASSRs were not modulated by attention in any
subject when comparing all ‘Attend left’ versus all ‘Attend
right’ trials. The largest responses were recorded over frontal,
occipital, and posterior temporal sites—consistent with pre-
vious ASSR studies [24, 34]. Topographic plots showing
which channels were selected for ASSR measures appear in
figure 5 (bottom).

3.3. Within-subject classification

We found that cross-correlation functions calculated from
single epochs of EEG were highly effective in decoding
which speaker had been attended, with classification accuracy
exceeding chance for all subjects at all tested epoch lengths
(figure 6 and table 1). At the shortest epoch length tested, 2 s,
the average classification performance across subjects was
62.5%. That performance increased monotonically as epoch
length increased, reaching 75% accuracy on average across
subjects with 10 s of data. At 40 s, we saw evidence of ceiling
effects on classifier performance, with three subjects above
95% classification accuracy. Classification accuracy differed
greatly across subjects, with as much as a 20% difference in
accuracy between the best- and worst-performing subjects.
Those differences remained consistent across epoch lengths
(i.e. the best- and worst-performing subjects were the same at
all epoch durations).
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Figure 5. Selected channels. Topographies depicting the most informative channels for each subject and each feature. Frequency of use for
each channel ranges from 1, meaning it was selected as one of the 15 most informative in every single train/test iteration, to 0, meaning that
the channel never was selected as one of the most informative 15 channels.
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In contrast to the classification based upon cross-corre-
lations with the stimulus envelopes, we found that classifi-
cation based on alpha power was poor. Mean classification
performance never dipped below 50% for any subject or
epoch length, indicating that there was some information
about side of attention available in the alpha power. However,
only a few subjects showed significantly above-chance clas-
sification accuracy, and those were still low and exclusively
found at short epoch lengths. Classification based on ASSR
magnitudes fared even worse, with accuracy never exceeding
chance for any subject at any epoch length.

3.4. Cross-subject classification

When using other subjects’ data for training, classification
accuracies for the cross-correlation feature retained a similar
shape to those of classifiers trained on the subject’s own data,
with accuracy increasing monotonically with epoch length
(figure 7 and table 2). Overall classification performance was
reduced as compared to the within-subject classifiers, ranging
from 8% less at shorter epoch lengths to 10% less at longer
epoch lengths, but still above chance for all subjects at all
epoch lengths. When using the cross-subject data to train
alpha power classifiers, the results closely mirrored those seen
in within-subject classification. Alpha power could only sig-
nificantly outperform chance at the shortest epoch lengths,
and only in two subjects. As before, the ASSR classifiers
failed to predict any subject’s data better than chance at any
epoch length.

4. Discussion

4.1. Cross-correlations

We were able to determine subjects’ locus of attention using
the cross-correlations between the speech envelopes and their

EEG, with accuracy increasing as a function of epoch length.
Encouragingly, classification performance for short epoch
lengths was on par with or exceeded that seen in a comparable
recent study using magnetoencephalography [35], a technol-
ogy that is often used to measure neural speech responses but
is impractical for most BCI purposes. Furthermore, we were
also able to determine the subject’s locus of attention from
classifiers trained on other subjects’ data, albeit with reduced
performance, indicating that a BCI based on envelope cross-
correlations would not necessarily have to be trained on a
potential user’s data prior to use. However, training the
classifier on their own data would maximize performance.

The accuracy with which we were able to classify
attention varied widely across subjects, with as much as a
20% difference in accuracy between the best and worst sub-
jects at longer epoch lengths. Put another way, the classifi-
cation accuracy using 2 s worth of EEG data from the best
subject was equivalent in performance to 20 s of data from the
worst subject. These differences between subjects are similar
to those seen in other types of BCIs, where it has long been
known that some subjects innately perform better with BCIs
than others, and pre-training ability to use a BCI is a very
strong predictor of post-training success [36]. However, in
this task the individual differences would not be driven by a
failure to learn how to modulate certain brain rhythms, but
rather on differences in the robustness of the stimulus-related
signals of interest. On post-hoc examination of the high and
low performing subjects, the better performers had stronger
cross-correlations between the speech envelopes and their
EEG, and thus also would have had higher signal-to-noise
ratios on individual epochs. Although we did not observe any
notable differences between these groups in their behavioral
performance, it would be interesting in future work to find out
if their abilities diverged during more challenging multi-talker
tasks.

Figure 6. Within-subject classification results. Classification accuracy is plotted as a function of EEG sample length for each of the three
features extracted from the EEG. Each point represents the mean classification accuracy for a single subject, while the solid black line
indicates the average across all nine subjects. Chance is marked with the dashed line at 50% classification accuracy. Significantly above-
chance accuracy values are marked by circles, while non-significant values are indicated by crosses.
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Table 1. Within-subject classification results1.

2 s Epochs 4 s Epochs ` 10 s Epochs 20 s Epochs 40 s Epochs

CI− Mean CI+ SD CI− Mean CI+ SD CI− Mean CI+ SD CI− Mean CI+ SD CI− Mean CI+ SD CI− Mean CI+ SD
Cross-correlations

S1 60.9 63.9 67.2 1.6 64.5 68.9 73.3 2.2 66.3 71.4 75.8 2.4 72.8 79.4 85.3 3.0 77.9 86.8 94.1 3.8 91.2 97.1 100.0 2.9
S2 64.8 68.7 72.0 1.8 71.4 76.3 80.5 2.4 72.5 77.7 83.4 2.7 81.3 86.5 92.7 3.2 85.4 91.7 97.9 3.2 91.3 95.7 100.0 3.0
S3 60.0 63.4 67.0 1.8 62.0 67.8 72.8 2.6 65.2 70.6 76.0 2.7 67.3 74.5 81.8 3.7 72.7 81.8 90.9 4.7 77.8 88.9 96.3 5.4
S4 55.2 59.5 63.3 2.0 57.8 63.2 68.6 2.8 58.4 64.6 70.2 3.2 61.4 69.3 77.3 4.3 64.4 75.6 86.7 5.5 72.7 86.4 95.5 6.6
S5 57.4 60.9 64.5 1.8 61.3 66.4 70.8 2.5 61.8 67.3 72.7 2.8 65.5 72.7 80.0 3.7 70.4 79.6 88.9 5.0 77.8 88.9 96.3 5.8
S6 64.9 68.7 72.5 2.0 70.7 76.1 81.1 2.6 70.8 76.4 82.0 2.8 81.8 87.5 93.2 3.1 86.4 93.2 97.7 3.2 95.5 99.5 100.0 2.3
S7 56.0 59.4 62.7 1.7 59.8 64.1 68.4 2.2 59.9 64.9 69.9 2.5 63.3 70.5 76.3 3.4 66.7 75.4 84.1 4.8 70.6 82.4 94.1 5.8
S8 54.0 57.7 61.2 1.8 55.6 60.6 66.3 2.6 56.8 62.4 67.4 2.7 60.5 66.9 74.2 3.6 62.9 72.6 82.3 5.0 67.7 80.6 90.3 6.4
S9 56.8 60.2 63.5 1.7 60.0 64.8 69.1 2.3 60.6 65.9 71.2 2.7 63.6 70.5 77.3 3.4 69.7 78.8 87.9 4.5 81.3 90.6 96.9 4.6
AVG 58.9 62.5 66.0 1.8 62.6 67.6 72.3 2.5 63.6 69.0 74.3 2.7 68.6 75.3 82.0 3.5 72.9 81.7 90.0 4.4 80.6 90.0 96.6 4.8
Alpha power
S1 49.7 52.9 56.1 1.6 50.3 55.0 59.2 2.3 48.9 54.2 59.4 2.7 48.8 56.3 63.0 3.6 45.0 54.0 64.5 5.3 42.0 57.0 69.0 7.1
S2 47.0 51.0 55.4 2.1 47.9 52.9 58.0 2.4 44.4 50.7 56.5 3.0 38.3 52.1 59.5 5.6 39.1 51.9 62.5 6.3 34.0 51.8 65.1 9.0
S3 52.1 55.6 59.1 1.8 52.1 57.3 62.5 2.5 49.4 55.4 60.9 2.9 47.3 55.6 64.0 4.2 43.6 55.6 66.8 5.7 41.6 56.7 71.8 8.2
S4 49.6 53.5 57.4 2.0 47.6 53.5 59.9 3.0 46.4 53.3 60.2 3.5 42.9 53.3 62.6 4.8 43.1 58.9 70.3 6.8 41.7 60.3 74.2 9.3
S5 50.4 54.0 59.0 2.1 48.8 54.4 59.2 2.7 48.7 55.6 61.7 3.2 47.3 55.6 64.0 4.3 43.4 54.8 68.0 6.2 41.6 60.4 75.6 8.2
S6 50.5 54.4 58.4 2.0 50.5 56.1 61.3 2.8 48.7 55.0 61.3 3.2 47.5 56.8 64.9 4.6 42.9 55.6 67.2 6.3 37.1 55.6 74.2 9.4
S7 49.6 52.5 55.8 1.6 48.9 53.6 57.7 2.2 47.9 53.4 58.5 2.6 47.0 55.0 61.6 3.7 44.3 54.7 65.0 5.3 33.0 54.0 66.0 8.0
S8 48.2 51.7 54.9 1.7 47.1 51.3 56.6 2.4 48.1 53.9 59.2 2.8 46.9 55.1 63.3 4.0 46.1 57.6 67.5 5.3 39.5 55.9 69.1 7.5
S9 49.2 52.2 55.3 1.5 47.0 51.3 56.3 2.3 46.2 51.8 56.8 2.6 43.3 51.8 58.7 3.7 40.1 52.5 61.7 5.3 34.9 50.8 66.8 7.9
AVG 49.6 53.1 56.8 1.8 48.9 53.9 59.0 2.5 47.6 53.7 59.4 2.9 45.5 54.6 62.4 4.3 43.1 55.1 65.9 5.8 38.4 55.8 70.2 8.3
ASSR power
S1 49.3 52.5 55.9 1.7 48.0 52.7 57.5 2.4 48.0 53.1 58.2 2.6 40.4 50.7 61.6 3.8 37.8 49.5 59.8 5.5 34.4 49.1 63.8 7.5
S2 48.4 52.3 56.5 2.1 46.3 52.1 57.9 3.0 45.6 52.3 58.0 3.2 38.2 49.9 61.6 4.2 40.6 53.1 65.6 6.3 38.1 55.5 70.7 9.0
S3 45.9 49.2 52.6 1.8 43.2 48.6 53.7 2.7 42.1 47.5 52.5 2.8 38.8 49.0 57.9 3.6 41.0 53.7 64.6 5.9 36.0 54.6 69.4 8.6
S4 49.0 52.8 56.7 1.9 45.6 50.6 56.0 2.8 47.2 53.4 59.6 3.1 40.1 52.8 64.7 4.5 38.8 52.1 65.4 6.5 35.4 53.5 71.7 9.4
S5 44.1 47.5 50.9 1.7 43.2 47.9 53.0 2.5 43.2 48.2 54.1 2.8 40.1 52.8 64.3 4.2 38.0 49.1 58.4 5.2 31.6 50.1 65.0 7.6
S6 44.3 48.6 52.4 2.1 42.5 48.6 54.0 2.9 43.8 50.0 56.7 3.2 36.9 49.6 62.3 4.6 35.1 48.7 60.1 6.5 30.3 48.5 66.6 9.0
S7 47.7 50.9 54.1 1.6 47.1 51.6 56.3 2.3 45.2 50.5 55.6 2.7 41.2 50.3 59.3 3.5 36.5 47.4 56.1 5.3 35.4 47.1 61.8 7.3
S8 46.6 49.8 53.0 1.7 45.2 49.6 54.1 2.4 44.8 50.4 56.0 2.8 40.4 51.7 63.0 4.1 42.9 55.8 65.5 5.8 37.7 53.8 66.7 7.8
S9 46.9 49.9 53.0 1.6 47.2 51.7 55.7 2.3 45.8 50.8 55.7 2.5 44.3 53.9 63.4 3.6 43.4 52.5 63.1 5.1 39.6 55.3 67.8 7.4
AVG 46.9 50.4 53.9 1.8 45.4 50.4 55.4 2.6 45.1 50.7 56.3 2.9 40.0 51.2 62.0 4.0 39.3 51.3 62.1 5.8 35.4 51.9 67.1 8.2

1

Full classification results including the means and standard deviations of the accuracy distributions, as well as the lower and upper bounds of the 99% confidence intervals for the means.

8

J.
N
euralE

ng.
11

(2014)
046015

C
H
orton

et
al



4.2. Alpha lateralization

Since alpha power showed the expected lateralization in the
subject averages, it may seem puzzling at first why classi-
fication based on alpha power in single epochs was inef-
fective. The most likely explanation is that alpha
lateralization is primarily associated with the deployment of
spatial attention, not the maintenance of spatial attention. In
this task, the most crucial time for deployment of spatial
attention is at the very beginning of the trial, which is not
included in our analysis window due to the problems that
onset responses cause for the cross-correlation analyses.
During our analysis window, the subjects are primarily
maintaining attention at the cued location, which may not
produce strong lateralization in alpha power. In fact, a
similar cocktail party study found that alpha lateralization
peaked 400–600 ms after sentence onsets, and was largely
gone by 1000 ms (when our analysis window began) [37].
Subjects may have needed to briefly redeploy spatial
attention at the transitions between sentences, which
could explain why classification was able to exceed
chance for a few subjects at short epoch lengths and why the
alpha power was lateralized in the subject averages. How-
ever, this lateralization was clearly not robust enough in
single epochs to produce useful classification of attention in
this task.

Additionally, it is important to note that spatial location
was not the only cue available for distinguishing between
the two competing speech streams. Once the target speech
stream had been segregated from the competitor, there are
many other features besides spatial location that subjects can
use to track the target speech stream, including pitch, timbre,
and tempo. If the speaker’s voice had been the same on
both the left and the right, the spatial feature would
likely have been much more salient to the subjects, and

consequently may have produced much stronger lateralization
of alpha power.

4.3. ASSRs

Attention did not affect the magnitudes of the ASSRs in the
subject averages, and so it was unsurprising that the ASSR
magnitudes did not help to classify attention in single epochs.
ASSR insensitivity to attention was also reported in a recent
similar study [10]. Since ASSRs have been shown to be
sensitive to attention in the past [22, 38], and have been used
to control a BCI [39], why were they not sensitive to attention
here? We believe the difference lies in the fact that our stimuli
were modulated speech utterances, whereas the studies in
which ASSRs are affected by attention have used modulated
tones, noise, or click trains. Modulated speech elicits much
smaller ASSRs than modulated tones, noise, or reversed
speech [25], suggesting that processing meaningful speech
requires a suppression of the uninformative (and possibly
interfering) amplitude modulation.

4.4. Conclusion

We have shown that neural responses to the envelopes of
natural speech can be used to determine subjects’ locus of
attention, and thus could form the basis of a novel BCI. While
the classification performance that we observed indicates that
this BCI would not improve upon the information transfer rate
in other BCIs, it would have the advantages of not requiring
any training on the part of the subjects, and could be used
with complex naturalistic stimuli such as speech. Addition-
ally, while we only tested two-way classification, we could
potentially increase the information transfer rate by increasing
the number of speakers in the environment. In true cocktail-
party scenarios, there may be dozens of competing speakers
in the room, yet people are skilled at isolating the speaker of

Figure 7. Cross-subject classification results. Classification accuracy is plotted as a function of EEG sample length for each of the three
features extracted from the EEG. Each point represents the mean classification accuracy for a single subject, while the solid black line
indicates the average across all nine subjects. Chance is marked with the dashed line at 50% classification accuracy. Significantly above-
chance accuracy values are marked by circles, while non-significant values are indicated by crosses.
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Table 2. Cross-subject classification results1.

2 s Epochs 4 s Epochs 5 s Epochs 10 s Epochs 20 s Epochs 40 s Epochs

CI− Mean CI+ SD CI− Mean CI+ SD CI− Mean CI+ SD CI− Mean CI+ SD CI− Mean CI+ SD CI− Mean CI+ SD
Cross-correlations

S1 57.6 60.6 63.8 1.6 61.9 66.3 70.7 2.2 61.2 65.9 71.1 2.5 69.5 75.7 80.9 3.2 73.5 82.4 89.7 4.1 82.4 91.2 100.0 4.2
S2 61.2 64.7 68.3 1.9 63.5 68.5 73.0 2.5 65.8 71.5 77.2 2.8 70.8 78.1 84.4 3.6 79.2 87.5 95.8 4.3 87.0 95.7 100.0 4.3
S3 52.0 55.8 59.6 1.9 54.7 59.4 64.9 2.7 53.8 59.3 65.2 2.9 52.7 60.9 69.1 4.1 58.2 69.1 80.0 5.6 59.3 74.1 88.9 7.6
S4 52.6 57.0 61.0 2.2 52.0 58.3 63.9 3.0 52.8 59.6 66.0 3.4 53.4 63.6 71.6 4.6 60.0 68.9 81.1 5.9 59.1 72.7 86.4 7.9
S5 53.6 57.3 60.7 1.8 54.4 59.5 64.6 2.7 56.4 61.8 67.5 2.9 59.1 65.5 73.6 3.8 61.1 70.4 81.5 5.3 66.7 81.5 92.6 6.7
S6 54.1 58.2 61.9 2.0 55.9 61.3 67.1 2.9 55.6 62.4 68.5 3.2 56.8 65.9 73.9 4.5 61.4 75.0 84.1 5.8 68.2 81.8 95.5 7.3
S7 54.2 57.4 60.5 1.7 56.6 60.9 65.2 2.2 56.3 61.6 67.0 2.6 59.0 66.2 72.7 3.5 60.9 71.0 79.0 4.7 64.7 76.5 91.2 6.3
S8 54.0 57.2 60.6 1.8 55.1 59.9 64.7 2.5 55.8 60.8 66.0 2.7 59.7 67.7 75.0 3.7 59.7 69.4 80.6 5.2 64.5 77.4 90.3 6.5
S9 50.3 53.7 57.1 1.8 52.1 57.0 61.2 2.4 53.4 58.7 63.6 2.7 50.8 58.3 65.2 3.6 53.0 62.1 72.7 5.3 57.8 71.9 84.4 7.2
AVG 54.4 58.0 61.5 1.8 56.2 61.2 66.2 2.5 56.8 62.4 68.0 2.9 59.1 66.9 74.0 3.9 63.0 72.9 82.7 5.1 67.7 80.3 92.1 6.4
Alpha power
S1 49.8 53.1 56.1 1.6 49.7 54.4 58.6 2.2 49.1 54.2 59.4 2.6 48.8 55.5 63.0 3.6 45.0 54.0 64.5 5.0 42.0 57.0 69.0 7.5
S2 46.8 51.0 55.2 2.1 45.3 50.8 56.3 2.8 44.9 51.8 58.4 3.2 42.5 52.1 60.6 4.6 41.3 51.9 66.8 6.4 29.6 51.8 69.5 9.8
S3 52.3 55.6 59.3 1.8 52.1 57.3 61.7 2.5 49.4 55.4 60.9 2.7 47.8 55.6 64.0 4.0 42.7 55.6 66.8 5.8 41.6 60.4 75.6 8.4
S4 49.4 53.8 57.9 2.1 46.7 53.1 59.0 3.0 45.8 52.7 60.2 3.4 44.0 54.5 62.6 4.6 43.1 56.7 68.0 6.5 37.1 60.3 74.2 9.7
S5 49.9 54.2 58.6 2.1 48.4 53.6 59.9 2.9 48.7 55.6 61.9 3.3 47.3 55.6 64.0 4.2 41.6 54.8 68.0 6.3 41.6 56.7 75.6 8.2
S6 50.5 54.4 58.1 1.9 50.8 56.5 62.5 2.8 48.1 55.0 60.7 3.3 47.5 56.8 66.1 4.5 44.0 55.6 69.5 6.6 41.7 55.6 74.2 9.0
S7 50.0 52.8 55.8 1.5 49.2 53.6 58.0 2.3 49.4 54.1 58.5 2.5 47.0 54.3 61.3 3.7 44.3 54.7 65.0 5.1 33.0 54.0 66.0 8.4
S8 48.1 51.7 54.9 1.7 47.4 52.0 57.0 2.4 48.1 53.4 59.6 2.8 46.1 54.3 62.5 4.0 44.4 55.9 65.8 5.2 39.5 55.9 69.1 7.7
S9 48.8 52.2 55.3 1.6 46.4 51.3 56.1 2.3 46.4 51.8 56.8 2.7 43.3 51.8 58.0 3.7 41.6 52.5 61.7 5.3 31.9 51.0 63.8 7.7
AVG 49.5 53.2 56.8 1.8 48.4 53.6 58.8 2.6 47.8 53.8 59.6 2.9 46.0 54.5 62.4 4.1 43.1 54.6 66.2 5.8 37.5 55.9 70.8 8.5
ASSR power
S1 49.9 52.9 56.3 1.7 48.1 53.1 57.5 2.4 47.3 52.7 57.9 2.6 38.7 49.0 59.3 3.8 37.0 48.1 58.4 5.6 32.4 47.1 64.8 7.9
S2 47.6 51.8 55.9 2.1 46.1 51.5 57.3 2.9 45.1 51.8 57.5 3.2 36.8 47.7 60.9 4.2 40.6 53.1 65.6 6.4 33.8 51.2 68.6 9.0
S3 45.3 49.0 52.1 1.8 43.0 48.4 53.5 2.7 42.1 47.1 52.5 2.8 39.4 49.6 59.7 3.8 41.0 51.9 63.7 5.8 36.0 50.9 65.7 8.3
S4 48.4 52.2 55.8 1.9 45.4 50.8 56.2 2.7 47.8 53.4 59.0 2.9 39.4 52.1 64.8 4.6 41.0 52.1 65.4 6.3 39.9 58.1 71.7 9.0
S5 44.1 47.7 51.3 1.8 42.8 47.7 52.8 2.5 42.7 47.7 53.2 2.8 39.4 49.6 61.0 4.0 38.0 49.1 60.3 5.4 32.6 47.4 62.3 7.4
S6 44.5 48.4 52.2 1.9 42.9 48.8 54.7 3.0 43.0 49.4 56.2 3.4 37.8 48.9 61.6 4.5 37.4 46.5 60.1 6.2 34.8 48.5 66.6 8.6
S7 47.6 50.6 53.9 1.6 46.9 51.4 56.0 2.2 46.1 51.3 57.0 2.8 42.5 52.6 64.7 4.0 38.7 50.3 60.4 5.2 32.4 50.0 64.7 7.8
S8 46.6 50.1 53.8 1.8 45.3 50.1 54.6 2.4 44.8 50.4 55.6 2.7 39.7 49.8 62.3 4.1 42.9 54.2 65.5 5.7 37.7 50.6 66.7 7.9
S9 47.0 50.2 53.1 1.6 47.3 51.8 56.1 2.2 46.2 50.8 55.1 2.4 44.7 55.3 64.8 3.4 43.4 52.5 61.6 5.0 39.6 55.3 67.8 7.1
AVG 46.8 50.3 53.8 1.8 45.3 50.4 55.4 2.6 45.0 50.5 56.0 2.8 39.8 50.5 62.1 4.1 40.0 50.9 62.3 5.8 35.5 51.0 66.5 8.1

1

Full classification results including the means and standard deviations of the accuracy distributions, as well as the lower and upper bounds of the 99% confidence intervals for the means.
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their choice. If people can do this behaviorally, there is good
reason to believe that we could similarly isolate the neural
response to the attended speaker, too. Thus, the upper limit of
the information transfer rate for this BCI may be determined
by the number of uncorrelated speech stimuli that can be
presented at once.
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